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Orientador: Marcelo Amorim Savi
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A natureza manifesta energia mecânica em diversas formas, incluindo vibração,
som, ondas, vento e biomecânica, que podem ser aproveitadas para alimentar sis-
temas eletrônicos. A colheita de energia utilizando materiais inteligentes aliada a
fenômenos mecânicos não lineares tem ganhado atenção pela sua alta densidade
de potência, design simples, escalabilidade e melhoria de desempenho. Apesar de
muitas soluções propostas, desafios de implementação persistem. Características
não lineares desencadeiam dinâmicas complexas, afetando diretamente a perfor-
mance. Portanto, uma análise adequada requer uma caracterização profunda do
coletor guiada pela perspectiva da dinâmica não linear. Este trabalho propõe um
arcabouço de análise não linear para sistema de colheita de energia, permitindo
abordar dois desafios recentes: coletores com restrição de espaço e colheita de ener-
gia de fontes multidirecionais, ambos mantendo alta performance. Para os sistemas
com restrição de espaço propõe-se um novo dispositivo compacto com dois pares
de transdutores piezoelétricos e de interações magnéticas, revelando características
multiestáveis sem precedentes. A análise de diferentes configurações associa dinâmi-
cas de alto deslocamento de período-3, período-1 e caóticas com alto desempenho.
Comparativos com o dispositivo clássico biestável destacam melhorias consideráveis
de performance. A colheita de energia multidirecional considera o uso de pêndulos,
propondo um coletor que combina transdutores piezoelétricos e eletromagnéticos. A
análise de três configurações demonstra que a multitransdução híbrida é crucial para
uma conversão de energética eficaz. Uma análise paramétrica mapeia a dinâmica e
o desempenho do sistema, revelando comportamentos complexos e irregulares car-
acterizados por combinações de oscilação e rotação, associados à maiores larguras
de banda de operação.
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Nature manifests mechanical energy in various forms including vibration, sound,
waves, wind, and biomechanics, which can be harnessed to power electronic sys-
tems. Energy harvesting using smart materials allied with mechanical nonlinear
phenomena has gained attention for its high power density, simple design, scalability,
and improved performance. Despite many proposed solutions, implementation chal-
lenges remain. Nonlinear characteristics trigger complex dynamics, directly affecting
performance. Thus, a proper analysis requires the harvester’s deep characterization
guided by a nonlinear dynamics perspective. This work proposes a nonlinear dy-
namics framework of analysis for energy harvesting systems, addressing two recent
challenges: harvesters in confined spaces, and energy harvesting from multidirec-
tional sources, both while maintaining optimal performance. To deal with confined
spaces, a novel compact structure is proposed with two pairs of magnetic interactions
and piezoelectric transducers, revealing unprecedented multistable features. Anal-
ysis of different configurations successfully associates high-displacement period-3,
period-1, and chaotic dynamics with higher performances. Comparisons with the
classical bistable harvester highlight considerable performance enhancements. The
multidirectional energy harvesting considers the use of pendulum structures, propos-
ing a device that combines piezoelectric and electromagnetic transducers. Analysis
of three configurations demonstrates that hybrid multitransduction is crucial for
effective energy conversion. A parametric analysis maps the system dynamics and
performance, revealing complex and irregular behaviors characterized by a combi-
nation of oscillation and rotational motion, leading to wider bandwidth systems.
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of the steady-state response are shown representing red points (e) 1,
(f) 2, and (g) 3 for Config. 4, and red points (h) 1, (i) 2, and (j) 3 for
Confi. 6. Non-maximum values in the OPDs are plotted in grayscale. 138

xxvii



6.31 Maximum overall average output power, P̄ (max)
avg , as a function of γ for

Configs. (a) 8 and (b) 10. Panels (c) and (d) display the slices M,
N, O, and P, Q, R of the OPDs, respectively, for 3 values: γ ≈ 0.1,
γ ≈ 0.2 and γ ≈ 0.3. Red circles denote the P̄ (max)

avg of each slice. Four
phase subspaces (x̄ × ˙̄x, z̄ × ˙̄z, ϕ̄ × ˙̄ϕ, and v̄ × Ī) and their Poincaré
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Chapter 1

Introduction

The rapid development of society in recent years has caused an increase in global
energy demand. Induced by modern science tools and elements of Industry 4.0, such
as wireless electronic devices and smart systems, energy-related issues are linked to
bottlenecks that need to be overcome. Moreover, the need for environmentally
friendly power supplies due to climate changes and the reduction of e-waste [7, 8]
are motivating the development of new paradigms. This scenario results in the need
for new strategies and creative solutions that can be viable for long-term appli-
cations. In this regard, the constant evolution of semiconductor technology keeps
significantly reducing the power consumption of electronic systems in general, espe-
cially wireless devices [9]. This trend is driving interest in harvesting environmental
wasted energy such as vibration, sound, wind, sea waves, and biomechanical motion
as an alternative power supply to traditional batteries [10] and for small-medium
size systems, as these sources of mechanical energy can be enough to power from
small electronic devices to small-scale urban areas [11, 12].

While the practice of energy conversion has prehistoric origins, the initial works
involving mechanical energy harvesting within this recent scope trace back to the
decade of 1990, when authors described a simple dynamical model demonstrating
the feasibility of such devices and explored their potential applications with different
types of transduction mechanisms [13, 14]. Since then, researchers have shown the
versatility of such systems by investigating a wide range of interesting applications in
the fields of the Internet of Things (IoT), Micro-electromechanical Systems (MEMS),
data collection, and small power grids. Among them, as depicted in Figure 1.1,
notable instances include:

• Civil infrastructure applications: Energy harvesting from bridge vibra-
tions [15, 16], powering charging stations for electric cars in smart roads [17],
extracting energy from loads on pavements in general (roads and sidewalks)
[18, 19], contributing to sustainable interior space design by harvesting energy
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from pressure of human walking [20, 21], enabling smart monitoring of foot-
bridges [22], AC power lines [23, 24], and sanitation systems pipelines [25, 26].

• Biology and biomedic applications: used to power biomedical devices
within the body by exploiting the natural contraction and relaxation motions
of the heart, lung, and diaphragm [27–30], real-time arterial pulse monitoring
through the epidermis [31], facilitating self-powered deep brain stimulation
used for neural prosthetics and brain-computer interfacing [32], and wildlife
monitoring [33–36].

• Self-charging wearables: Energy harvesters employed to power wearable or
portable devices through biomechanical human motion, such as jaw movements
[37], finger bending [38], knee articulation dynamics [39], impact of shoes on
the ground [40, 41], arm swinging [42, 43], and overall full body motion [44–47].

• Vehicle and transportation applications: Harvesting energy from vehicle
vibrations [48] and rotational energy of wheels [49], thereby powering sensors
or small circuits. Applied to monitor suspension systems [50, 51] and tires
[52]. Deployment in powering sensors in freight trains [53] and railroad tracks
[54], aiming to store otherwise dissipated into the environment.

• Offshore applications: Mainly associated with marine buoys to environmen-
tal monitoring and communications [55–58]. Additionally, some works address
energy harvesting from flow-induced vibration energy in the oil and gas in-
dustry, aiming to reduce the cost of maintaining and replacing batteries of
sensors around well regions [59], although these do not precisely align towards
the environmental-friendly paradigm.

• Aerospace applications: Harvesting energy from flow-induced vibrations
in structural aerospace vehicles like unmanned aerial vehicles (UAVs) [60]
and drones [61]. Also, employed for structural health monitoring in larger
aerospace vehicles [62, 63].

While numerous potential applications exist, several challenges still persist in terms
of practical implementation and dissemination of this technology, as various factors
can influence the performance of such systems.

In this work, two of these challenges are addressed with enhancement in perfor-
mance as the primary goal. The first challenge is related to the implementation of
these systems into confined and compact spaces, given that many applications are
compact and limited in size. The second challenge relates to the energy harvester’s
ability to harness energy from multidirectional sources since numerous solutions up
to the present time have been designed to operate solely in one specific direction.
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Figure 1.1: Energy harvesting applications.

Both problems are tackled through the integration or refinement of mechanical non-
linear modulation techniques applied to conventional energy harvester structures,
as numerous nonlinear features are known to drastically increase energy harvesting
performance [64]. Among the most noteworthy contributions of this doctoral thesis,
the following stand out:

First, the proposal of a framework of analysis for energy harvesters, guided by
a nonlinear dynamics perspective, where classical tools are revised and new tools,
based on the combination of classical techniques, are introduced. The framework
is built aiming to achieve a deep understanding of the energy harvesters’ charac-
teristics and unique traits. These characteristics, such as dynamical patterns and
performance, are mapped and quantified through an in-depth parametric analy-
sis providing valuable insights for the design decision-making of energy harvesting
systems. This facilitates the understanding of whether the energy harvester is suit-
able for a specific application and whether it warrants further investigation. This
framework formalizes the methodology previously employed in analyzing bistable
harvesters in a prior study [65], and it is used to handle all the analyses showcased
in this work.

Second, the concept of a novel compact two-degrees-of-freedom nonlinear energy
harvester structure with multistable behavior, building upon improvements made to
previous harvesters detailed in existing literature [1, 2, 66, 67]. This new harvester
is characterized by a compact inner-outer beam arrangement. Each beam is asso-
ciated with a set of magnets and a piezoelectric element, resulting in the presence
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of two magnetic interactions and two piezoelectric elements within the system. The
interaction of the structure with these magnetic forces gives rise to unprecedented
multistable characteristics. A reduced-order model of the harvester is established
and the nonlinear dynamics framework is employed to analyze this system. Essen-
tial characteristics are mapped and, subsequently, a comprehensive comparison with
the classical bistable harvester is conducted, showcasing performance improvements
across virtually all relevant conditions. Additionally, the performance comparison
between distinct configurations of the multistable harvester is performed, determin-
ing the best and the worst configurations in terms of energy conversion.

Third, the development of a hybrid pendulum-based energy harvester designed
with multidirectional energy conversion capabilities. This new harvester is a modi-
fied version of the classical cantilever-based piezoelectric energy harvester [68] with
an attached pendulum in its free end. Specifically, a piezoelectric transducer is at-
tached to a cantilever structure to convert energy from flexural oscillations, while
an electromagnetic converter is attached to the pendulum to harness the rotational
energy. The design is developed in such a way that the system can perform multidi-
rectional energy harvesting, mitigating the energy-absorbing effects of the pendulum.
First, a lumped model is established to capture the essential characteristics of the
system. Subsequently, an analysis is presented assessing the viability of employing
pendulum structures to attain multidirectional capabilities. The analysis revealed
that this kind of system must have an associated transduction mechanism to har-
ness rotational energy, as without it, the pendulum works as an energy absorber.
Moreover, an in-depth analysis using the nonlinear dynamics framework is show-
cased, characterizing the global dynamics of the system and identifying the optimal
and suboptimal structural parameters in terms of energy conversion. Finally, the
dynamical responses and patterns associated with high performance are identified.
The analysis revealed that these responses are often characterized by a blend of ir-
regular complex behaviors, coupled with a mix of oscillatory and rotational patterns
of motion, resulting in wider bandwidth systems.

These contributions are related to the following publications in international
journals:

• COSTA, L. G., MONTEIRO, L. L. S., PACHECO, P. M. C. L., et al. “A para-
metric analysis of the nonlinear dynamics of bistable vibration-based piezoelec-
tric energy harvesters”, Journal of Intelligent Material Systems and Structures,
v. 32, n. 7, pp. 699–723, 2021. doi:10.1177/1045389X20963188. Available at:
<https://doi.org/10.1177/1045389X20963188>.

• COSTA, L. G., SAVI, M. A. “Nonlinear dynamics of a compact and mul-
tistable mechanical energy harvester”, International Journal of Mechan-
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ical Sciences, v. 262, pp. 108731, 2024. ISSN: 0020-7403. doi:
10.1016/j.ijmecsci.2023.108731. Available at: <https://www.sciencedirect.
com/science/article/pii/S0020740323006331>.

• COSTA, L. G., MONTEIRO, L. L. S., SAVI, M. A. “Multistability investi-
gation for improved performance in a compact nonlinear energy harvester”,
Journal of the Brazilian Society of Mechanical Sciences and Engineering, v.
46, n. 4, pp. 212, mar. 2024. ISSN: 1806-3691. doi: 10.1007/s40430-024-
04766-5. Available at: <https://doi.org/10.1007/s40430-024-04766-5>.

• COSTA, L. G., SAVI, M. A. "Pendulum-based hybrid system for multidirec-
tional energy harvesting". Nonlinear Dynamics, 2024, doi: 10.1007/s11071-
024-10040-z, accepted for publication.

• COSTA, L. G., SAVI, M. A. "Complex nonlinear dynamics of a multidirec-
tional energy harvester with hybrid transduction", Smart Materials and Struc-
tures, in review.

In addition, there are 8 more national and international conference publications that
included preliminary results for the final version of this document.

1.1 Layout of the Thesis

This thesis is organized into seven main chapters and one appendix chapter. This
first chapter introduces the work, emphasizing its motivations, objectives, contribu-
tions and overall organization.

Chapter 2 provides a historical overview of the evolution of mechanical energy
harvesters, supported by the theoretical foundations behind the main transduction
mechanisms, and the most common nonlinear modulations used to enhance perfor-
mance in this field.

Chapter 3 formalizes the nonlinear dynamics framework applied throughout the
entirety of this thesis. Brief explanations of classical nonlinear dynamics theories are
presented, along with a depiction of the methodologies developed to deeply analyze
nonlinear mechanical energy harvesters.

Chapter 4 provides a brief generalization of the modeling of nonlinear symmetric
multistable systems utilizing polynomials.

Chapter 5 introduces the design concepts behind the proposed compact multi-
stable energy harvester. A reduced-order model is, then, presented to describe the
main characteristics of the structure. An initial analysis is conducted to character-
ize the stability of the system and identify parameters that can alter its stability
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properties. Subsequently, a comprehensive overview analysis of the system is con-
ducted aimed at understanding its main qualitative dynamical traits and identifying
the conditions in which the harvester achieves the best performances. Furthermore,
a comparison between the proposed system and the classic bistable harvester is
performed, highlighting its potential to be employed in compact spaces.

Chapter 6 discusses the incorporation of pendulum structure into conventional
energy harvester designs to achieve multidirectional capabilities. A generic archetype
model is introduced to examine the fundamental characteristics of this type of har-
vester. The initial analysis encompasses three configurations to determine the fea-
sibility of employing pendulum structures for multidirectional energy harvesting.
Then, a general parametric analysis of the system is performed to determine the
most and the least favorable combination of structural parameters in terms of en-
ergy harvesting capacity. Additionally, the dynamical responses and patterns associ-
ated with high performance are identified. These responses are often characterized
by a blend of irregular complex behaviors, coupled with a mix of oscillatory and
rotational patterns of motion, resulting in wider bandwidths.

Chapter 7 summarizes the outcomes of this work, draws conclusions from the
preceding chapters, and offers recommendations for potential future research within
the thematic scope of this thesis.

Lastly, Appendix A presents the theory behind elementary symmetric polynomi-
als used to generalize the modeling of multistable systems, Appendix B presents the
main algorithms utilized in this work and some of their limitations, and Appendix C
presents the procedure to normalize the dynamical systems proposed in this work.
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Chapter 2

Literature Review

This chapter is dedicated to performing a brief historical review of the devel-
opment of mechanical energy harvesters and the mechanisms of energy conversion
used in these systems.

2.1 Transduction Mechanisms

A transducer is a device, component, or material that converts one form of energy
into another. In the context of engineering and physics, a transducer is commonly
used to convert a physical quantity, such as mechanical displacement, pressure, tem-
perature, or light intensity, into an electrical signal, or vice-versa. This conversion
allows for measurement, detection, or transmission of the physical quantity in a more
convenient or usable form. In other words, they are the core mechanisms used in
energy harvesting systems that directly or indirectly couple the mechanical physical
domain to the electrical physical domain.

There are many types of transduction mechanisms used in mechanical energy
harvesting systems including piezoelectricity, electromagnetic induction, triboelec-
tricity, magnetostriction, flexoelectricity, piezomagnetism, and magnetoelectricity.
The following subsections are devoted to describing the working mechanism of the
most common ones found in the literature. Towards the end, Table 2.1 is presented
outlining the strengths and weaknesses of each main mechanism, demonstrating that
the choice of which to use depends on the specific application.

2.1.1 Piezoelectricity

Piezoelectricity is a naturally occurring phenomenon observed in certain crystals.
It involves the electromechanical relationship between mechanical deformation and
electrical voltage. The effect was discovered around 1880 by the brothers Jacques
and Pierre Curie, who experimentally demonstrated that an electrical voltage would
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emerge on the surface of specific crystalline materials when subjected to mechani-
cal deformation. In the subsequent years, it was revealed that the reverse of this
effect also took place [69]. These phenomena were called the direct and inverse
piezoelectric effects, respectively, and are illustrated in Figures 2.1 and 2.2.

(a) (b) (c)

Figure 2.1: Direct piezoelectric effect. Material (a) at rest, (b) subjected to a
mechanical tensile stress, (c) subjected to a mechanical compression stress.

(a) (b) (c)

Figure 2.2: Inverse piezoelectric effect. Material (a) at rest, (b) subjected to an
electrical voltage, (c) subjected to an electrical voltage of opposite polarity.

Despite piezoelectricity having been observed in natural crystalline materials
such as tourmaline, quartz, Rochelle salt, and topaz, its effects were relatively weak.
It was only in the mid-20th century that synthetic piezoelectric materials emerged,
enabling practical applications due to their high degree of electromechanical coupling
[70]. Some of these materials are illustrated in Figure 2.3, and for a more complete
list of piezoelectric materials refer to [71].

The typical manufacturing process of synthetic piezoelectric ceramics begins with
a mixture of base materials in powder form. The materials are heated to a tem-
perature range of T = 1200◦C to T = 1500◦C (above the Curie temperature, TC)
and shaped into the desired geometry. In this form, the material doesn’t yet exhibit

8



Figure 2.3: Natural piezoelectrics: Quartz, human bone, and topaz. Synthetic: PZT
(Lead Zirconate Titanate) and PVDF (Polyvinylidene Fluoride), respectively.

strong piezoelectric characteristics due to the misaligned orientation of its electric
dipoles. The piezoelectric effect is associated with the quantity of electric dipoles
present in the material and their alignment. Therefore, through the process known
as Poling, the electric dipoles of the raw material are reoriented to remain relatively
aligned, resulting in a strong electromechanical coupling [72].

The Poling process involves applying a strong electric field to the material, as
depicted in Figure 2.4. Firstly, the material is heated to temperatures above the
Curie temperature, followed by the application of a strong electric field to the ma-
terial, causing the alignment of its electric dipoles in the direction of the field.
Subsequently, the temperature is rapidly reduced, and the electric field is removed,
maintaining the alignment of the material’s electric dipoles.

T >TC T <TCT >TC
(a) (b) (c)

Figure 2.4: Polarization process in synthetic piezoelectrics. (a) Heating the material
above the Curie temperature, TC ; (b) Application of a strong electric field; (c) Rapid
cooling of the material and removal of the electric field.

In microstructural terms, the piezoelectric effect arises from atomic misalign-
ment, resulting in polarization among the atoms. Figure 2.5 illustrates this behavior
for a crystallographic structure of PZT (Lead Zirconate Titanate), one of the main
materials utilized in energy harvesting applications.
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Pb2+

O2–

Ti4+; Zr4+

Figure 2.5: PZT unit cell at rest, and subjected to an electric field or strain, respec-
tively, resulting in the atomic misalignment, which produces a polarization among
the atoms.

For high-efficiency energy harvesting purposes, the direct piezoelectric effect of
synthetic materials is exploited, and through the application of the principles of
thermodynamics and the continuum hypothesis, the behavior of linear piezoelectric
materials is explained by Equations 2.1 and 2.2 [73].

S = sE σ + dT E (2.1)

D = d σ + εσ E. (2.2)

The stress (σ), the strain (S), the electric field (E), and the electric displacement
(D) constitute the field variables, while the elastic compliance tensor (s), piezoelec-
tric constant tensor (d), and dielectric tensor (ε) represent pertinent coefficients.
Superscripts □E and □σ indicate their assessment under constant electric field and
constant stress conditions, respectively, while □T denotes the transpose operation.

In fact, four standard forms exist for the constitutive equations of linear piezo-
electric materials. Of these, the formulation encapsulated in Equations 2.1 and
2.2 stands out as the preferred paradigm for piezoelectric constitutive equations in
bounded media and, correspondingly, for the context of energy harvesting. This
choice is motivated by the ability to eliminate specific stress components depend-
ing on the geometry, as well as particular electric field components dependent on
electrode placement.

2.1.2 Electromagnetic Induction

In 1831, Michael Faraday conducted a series of experiments and observed that
when a wire and a magnet move relative to each other, the change in the magnetic
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flux results in a current being induced to the wire, thus generating a voltage [74].
This is known as Faraday’s law of induction. Figure 2.6 illustrates this behavior:
when the velocity, vm, of the magnet, is zero, no voltage is produced. On the other
hand, when vm > 0, a proportional voltage is produced.

(a)
vm = 0

(b)
vm > 0

(c)
vm > 0

Figure 2.6: Electromagnetic induction. (a) A stationary magnet near a coil or wire
does not change the magnetic flux through the coil, resulting in no induced current.
(b) and (c) A moving magnet near a coil or wire changes the magnetic flux through
the coil, inducing a current. The signal of the current/voltage is associated with the
direction of the magnet’s movement.

Later, in 1865, this behavior was fully analytically explained by James Clerk
Maxwell [75], which states that:

v(t) =

∮
∂S

E · dl = −
∫
S

∂B

∂t
· dA = −dΦB(t)

dt
, (2.3)

where v(t) is the voltage produced, E is the electric field, B is the magnetic induction,
ΦB is the magnetic flux, S is a surface bounded by the closed contour ∂S, dl is an
infinitesimal vector of the contour ∂S, and dA is an infinitesimal vector element
of the surface S. A negative sign arises due to Lenz’s law, which ensures energy
conservation. It is also possible to represent Faraday’s law in differential form by
applying Stoke’s theorem, as shown by Equation 2.4.

∇× E = −∂B
∂t

(2.4)

By extension, one can define the magnetic flux linkage, ψ(t), as the change in
magnetic flux in a coil of Nc turns as ψ(t) = NcΦB. This means that Faraday’s law
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can also be represented in terms of the flux linkage as depicted by Equation 2.5.1

v(t) = −dψ(t)
dt

= −Nc
dΦB(t)

dt
(2.5)

2.1.3 Triboelectric Effect

The triboelectric effect is the phenomenon wherein electric charges accumulate
as a result of the contact and subsequent friction between two different materials,
that is, a coupling effect of contact electrification and electrostatic induction caused
by the potential difference of two materials [77].

Despite triboelectrification being a common phenomenon observed in nature, the
actual mechanisms behind its effect within the microstructure domain are still not
very clear. The phenomenon involving the establishment of chemical bonds at the
interfaces of distinct contacting materials, accompanied by the migration of charges
driven by disparate electron affinities, is commonly acknowledged. The transferred
charges between two materials can be molecules, ions, and electrons. Upon disen-
gagement, certain bonded atoms exhibit a propensity to retain the acquired elec-
trons, while others tend to relinquish them. This can lead to opposite charges on
the surfaces of the respective materials that were in contact. The resulting opposing
charges on the contacting surfaces give rise to a triboelectric potential, which, in
turn, can cause electrons in the underlying material to move in order to balance
out the created difference in electric potential [78, 79]. This process is illustrated in
Figure 2.7.

Regarding the macroscopic domain, the theoretical basis of the triboelectric ef-
fect is constituted by Maxwell’s displacement current [80], JD, which is defined by
Equation 2.6.

JD =
∂D

∂t
= ε0

∂E

∂t
+
∂P

∂t
(2.6)

where E is the electric field, D is the electric displacement field, P is the polarization
field density, ε0 is the vacuum permittivity.

In the context of a conventional isotropic media, the relationship P = (ε− ε0)E

governs, yielding D = εE, with ε representing the permittivity of the dielectric
material. Consequently, the displacement current becomes JD = ε (∂E/∂t).

In contrast, in media characterized by the existence of surface polarization
charges (typical of piezoelectric and triboelectric materials), the impact of polar-
ization density originating from surface electrostatic charges on the displacement
current cannot be ignored [81]. As such, the expression takes the form represented

1In the case of inductance, the definition of magnetic flux and magnetic flux linkage can be
treated as equivalent for convenience in engineering disciplines. However, this is not true, especially
for memristors, which are the fundamental nonlinear circuit elements [76].
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Pressed Releasing

ReleasedPressing

Figure 2.7: Triboelectric effect in a vertical contact-separation triboelectric energy
harvester. Electrodes are represented in gray, while the tribopositive and triboneg-
ative distinct materials are represented in orange and red, respectively.

in Equation 2.7

JD =
∂D

∂t
= ε

∂E

∂t
+
∂PS

∂t
. (2.7)

Here, the first term signifies the current induced by the dynamic electric field, while
the second term represents the current arising from the polarization field generated
by surface electrostatic charges, denoted as PS. Notably, the latter term constitutes
the foundation premise of triboelectric energy harvesters (TEHs). In essence, TEHs
embody the practical implementation of displacement current within the domain of
energy conversion and sensing.

Based on this concept, four operational modes have been developed to align with
different applications, as visually presented in Figure 2.8. The vertical contact-
separation mode (VCS) involves inducing current through the vertical motion of
both layers. In the contact-sliding mode (CS), current induction arises from the
lateral friction occurring between the two material layers. The single electrode mode
(SE) triggers current by intermittently engaging a single material with an electrode.
Meanwhile, the freestanding triboelectric-layer mode (FTL) operates with a solitary
layer, intermittently contacting various electrodes laterally. Notably, the VCS and
FTL modes predominantly find application in rotational contexts, whereas the CS
and SE modes find utility in other scenarios. It is noteworthy that these modes can
be synergistically used within a singular application context [82].

13



(a) Vertical Contact-Separation Mode (b) Contact-Sliding Mode

(c) Single-Electrode Mode (d) Freestanding Triboelectric-Layer Mode

Figure 2.8: Triboelectric modes. (a) Vertical Contact-Separation Mode (VCS), (b)
Contact-Sliding mode (CS), (c) Single-Electrode mode (SE), and (d) Freestanding
Triboelectric-Layer mode (FTL).

TEHs encompass a broad spectrum of materials, spanning from organic sources
such as silk, wool, and cotton, to engineered synthetics like peptide, polyamide,
polyester, polydimethylsiloxane, polyvinylchloride, and polytetrafluoroethylene.
Additionally, TEHs incorporate commonly employed metals like aluminum, cop-
per, and iron, as well as semiconductors including SiO2, TiO2, and silicon [83].
Also, liquid metals, such as mercury (Hg) can be used as a tribopositive layer [84].
A subset of these materials is visually depicted in Figure 2.9, while a more complete
compilation can be found in [82] for reference.

Figure 2.9: Some common materials that can be employed for triboelectric energy
harvesting. From left to right: Aluminium, Kapton (Polyimide), different types of
Rubber, Polystyrene, and PVC (Polyvinyl Chloride).

2.1.4 Magnetostriction

The magnetostrictive effect is a phenomenon exhibited by specific materials in
which a change in length occurs when they are exposed to a magnetic field. The
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first observation of this phenomenon was documented in 1842 by James Prescott
Joule during his experimentation with the effects of a magnetic field on a piece
of iron [85]. Subsequently, Emilio Villari discovered the reciprocal effect, wherein
applying stress to a magnetostrictive material subjected to a magnetic field alters its
magnetization. This phenomenon is now recognized as the inverse magnetostrictive
effect, magnetoelastic effect, or Villari effect.

(a) (b)

(c) (d)

Figure 2.10: Villari effect in a magnetostrictive material. (a) Initially, the magnetic
domains within the material are randomly oriented. (b) When a magnetic field is
introduced, the magnetic domains align, causing slight deformation. (c) Applying
tensile stress deforms the material and reorients the magnetic domains, inducing
a current in the external circuit. (d) Applying compressive stress also deforms
the material and reorients the magnetic domains, inducing a current with opposite
polarity in the external circuit.

Figure 2.10 visually portrays the Villari effect, depicting the arrangement of
magnetic domains within the magnetostrictive material. When the material is at
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rest, its magnetic domains exhibit arbitrary orientations. Upon the placement of a
magnet in proximity to the magnetostrictive material, these domains align with the
biased magnetic field’s direction, leading to a minor deformation. The application
of compressive or tensile stress on the material prompts a rotation of its magnetic
domains, consequently inducing alterations in the surrounding magnetic field. Fol-
lowing Maxwell’s equations, this transformation induces a current within the coil
surrounding the material, which can be harnessed for energy-harvesting purposes.

Through the application of the fundamental principles of thermodynamics and
considering the continuum hypothesis, Equations 2.8 and 2.9 serve as models for
characterizing the behavior of linear magnetostrictive materials [86].

S = sH σ + dT
m H (2.8)

B = dm σ + µσ H (2.9)

In these expressions, H and B correspond to the magnetic field and magnetic in-
duction tensors, respectively, while S and σ stand for the strain and stress tensors.
The parameter s denotes the pure linear elastic compliance matrix, µ represents the
linear magnetic permeability matrix, and dm symbolizes the piezomagnetic constant
matrix. □H and □σ denotes that the variable is measured at constant magnetic field
and stress, respectively. □T stands for the transpose [87, 88].

Figure 2.11: Synthetic magnetostrictive materials. Galfenol and Terfenol-D, respec-
tively.

Similar to the scenario observed in piezoelectricity, only synthetic materials are
feasible candidates for energy harvesting purposes. Figure 2.11 shows two prevalent
magnetostrictive materials employed within the field of energy harvesting: Galfenol
and Terfenol-D. Notably, these materials exhibit a noteworthy magneto-mechanical
coupling coefficient, which renders them prominent choices for application in energy
harvesting contexts.
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Table 2.1: Advantages and disadvantages of the main transduction mechanisms
found in the literature.

Transduction Advantages Disadvantages

Piezoelectricity
[11, 77, 89–91]

• High power density
• Easy to manufacture
• 3D deposition in any shape
• Compact
• Lightweight
• High durability
• Environment friendly
• Can be directly integrated into MEMs
• Biocompatibles (some materials)

• Functional fatigue (depolarization)
• Material fatigue
• Energy converted limited to small elec-

tronics or small urban centers

Electromagnetic
Induction
[89, 92–95]

• Energy conversion in any scale
• Energy converted is proportional to coil

turns
• Does not rely on any special material

properties

• Low power density
• Bulk structure due to magnets and coils
• Heavyweight
• May be interfered with by other electro-

magnetic waves

Solid
Triboelectricity
[89, 96–98]

• High power density
• Compact
• High efficiency
• Low cost
• Easy to manufacture
• Lightweight
• Environment friendly
• Wide range of material choices

• Energy converted limited to small elec-
tronics

• Limited knowledge of triboelectric physi-
cal mechanisms

• Mechanical wear over time

Liquid
Triboelectricity
[84, 99]

• All the solid triboelectricity advantages
• Shape adaptability
• No mechanical wear
• High electron mobility

• Energy converted limited to small elec-
tronics

• Limited knowledge of triboelectric physi-
cal mechanisms

Magnetostriction
[87, 100]

• High power density
• No functional fatigue (no depolarization)
• Large coupling coefficient
• Energy converted is proportional to coil

turns

• Material fatigue
• Bulk structure due to magnets and coils
• May be interfered with by other electro-

magnetic waves

2.2 Mechanical Energy Harvesters

Mechanical energy harvesters usually consist of three main parts: the main struc-
ture, the transducer, and the circuit. The transducer is typically attached to the
main structure, which acts as an energy bridge between the surroundings and the
transducer. The transducer then connects the main structure to the circuit. In
this process, energy moves in two directions, but some energy is lost due to heat,
damping and other factors. As a result, a portion of the initial mechanical energy is
transformed into electrical energy by the system. This electrical energy is collected
by the circuit at the end of this process, as depicted in Figure 2.12.
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Figure 2.12: Energy flow in the mechanical energy harvesting process.

In terms of efficiency in real applications, the hybridization strategy of mechani-
cal energy harvesters utilizing different types of transducers is a trend in literature.
By combining different types of transducers, the hybridization approach can exploit
the unique advantages of each transducer, resulting in a greater energy harvesting
capacity. Depending on the combination of transducers, various applications can be
realized. For instance, CHUNG et al. [101] utilized a Kresling origami structure that
combined rotational triboelectric and piezoelectric/triboelectric nanoconverters in
contact mode. This innovative approach allowed the structure to take advantage
of the rotational movement, the generated strain and contact, resulting in a better
energy harvesting performance. Similarly, ZHONG et al. [102] utilized both electro-
magnetic and triboelectric transducers to build a hybrid energy harvester based on
rotation to scavenge biomechanical energy as a mobile power source. EGBE et al.
[103] employed three different transduction mechanisms to enhance the conversion of
wind energy to electrical energy through a rotational device to power sensors. Other
researchers have also reported the use of various hybrid devices showing improved
performance through the utilization of different conversion strategies [104–107]. By
leveraging the benefits of multiple transducers, hybrid energy harvesters can pave
the way for more efficient and practical energy harvesting solutions.

Despite the transducer mechanism, the host structure itself exerts a major influ-
ence on the performance of the energy harvester. The choice of a proper structural
design configuration is an essential point. The designs found in the literature can
be classified into two main types: resonators and non-resonators. Resonator-type
energy harvesters are generally highly efficient when operating within a limited fre-
quency range, whereas non-resonant energy harvesters typically achieve higher effi-
ciency at higher excitation frequencies. This characteristic renders resonant energy
harvesters particularly well-suited for applications involving low frequencies. Within
the scope of this study, particular emphasis is placed on energy harvesters of the
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resonator variety.
The archetypal resonant energy harvesting structure is based on design con-

taining beams, especially cantilever beams [108]. Many efforts have been made to
fully model and experimentally validate this type of design, making the cantilever
arrangement one of the most common designs found in the literature [109–111].
Figure 2.13 illustrates some configurations of a cantilever-type piezoelectric energy
harvester. The significant shortcoming of this design is the lack of efficiency when
operating at frequencies that deviate significantly from its natural frequency. Under
these conditions, the harvester deflection tends to decrease, resulting in low elec-
trical output and limiting its application [112]. This drawback leads researchers to
insert mechanical modulations in this design to enhance its performance.

(b)

(c) (d)

Base TransducerHost Structure Tip Mass Circuit

(a)

Figure 2.13: Piezoelectric mechanical energy harvester cantilever designs: (a) Simple
unimorph design, (b) simple bimorph design, (c) unimorph design with a tip mass,
and (d) bimorph design with a tip mass.

The evolution of the cantilever design has led to the incorporation of additional
mechanical degrees-of-freedom (DoF) to operate in the parallel direction of the ex-
ternal input excitation, creating an additional efficient operating region [113]. This
progression led to the design proposed by WU et al. [1], which consists of an outer
beam and an inner beam, as shown in Figure 2.14a. This configuration brings
the first two natural frequencies closer together, thereby creating a larger operat-
ing region for the harvester and rendering the 2-DoF cantilever-based system more
compact.

The improvement of the cantilever system has also led to the incorporation of
nonlinear characteristics. A variety of nonlinear modulations have been proposed,
and new ones continue to be proposed to this day [114, 115]. In this regard, non-
linear energy harvesters are highly effective in delivering broadband performance,
making them well-suited for general applications. Multistable energy harvesters, as
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(b)(a)

Base TransducerHost Structure Tip Mass

Circuit Magnet

Figure 2.14: Representation of dual-beam cantilever-based energy harvester struc-
tures, which can be approximated as 2 DoF structures. (a) The compact structure
proposed by WU et al. [1]. (b) The nonlinear bistable compact structure proposed
later by WU et al. [2].

the name suggests, belong to a class of systems that exhibit multiple stable posi-
tions. This approach has proven to be effective as it increases the deflection of the
system, enhancing its energy harvesting capabilities. Various techniques can be em-
ployed to achieve multistability, such as incorporating magnetic interactions [116],
spring actuation [117], gravity effects [118], and inducing the mechanical buckling
by axial forces [119] or magnetic induced buckling [120]. As far as this is concerned,
researchers have extensively studied the potential of multistability in one-degree-
of-freedom systems, exploring different configurations including bistable [65, 121],
tristable [122, 123], tetrastable [124, 125], and pentastable [126, 127] systems. The
problem of adding more stable positions is the creation of a potential energy bar-
rier, which can reduce its performance depending on the level of the input excitation.
Generally, the literature shows that increasing the number of stable positions can
reduce this barrier.

The construction of multistable harvesters involves various aspects, such as the
position and angle of the magnets, as well as potential asymmetries, which are crucial
considerations. KUMAR et al. [128] revealed the potential benefits of employing a
monostable asymmetric nonlinear system in specific cases, surpassing the symmet-
ric bistable system. WANG et al. [129] demonstrated that the utilization of an
asymmetric bistable potential negatively impacts energy harvesting capacity when
the system dynamics originate from the vicinity of the deeper equilibrium point.
However, if an initial condition is established near the shallower energy well, perfor-
mance can be improved. CAO et al. [130] established that modifying the angle of
the magnets responsible for inducing bistability can significantly alter the dynamics
of the classical bistable energy harvester. Furthermore, NORENBERG et al. [131]
demonstrated that adjusting the slope angles of magnets can effectively counteract
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the adverse effects of a bistable asymmetric potential.
Another strategy is to exploit non-smoothness, for example, incorporating im-

pacts into the system. This idea increases the system bandwidth but at the cost of
reducing its maximum output power [132]. This approach is well-suited for scenarios
where the ambient mechanical excitation exhibits a wide range of frequencies. The
disadvantage is that the non-smoothness can cause mechanical wear over time, lead-
ing to structural damage in long-term applications [133]. In addition, flow/vortex-
induced energy harvesters are also explored, where the input excitation is mainly
(but not always) provided by fluids interacting with a bluff body with different ge-
ometries [134–137], including asymmetric designs [138], metasurfaces [139]. It is also
possible to concurrently harness base excitation and wind excitation with this type
of nonlinear modulation [140], and combine magnetic-induced multistability with
this type of harvester [141–144].

(a) Magnetic Bistable (b) Magnetic Tristable (c) Magnetic Tetrastable

(d) Post-Buckled Bistable (e) Magnetic-Buckled Bistable (f) Nonsmooth/Impact

(g) Vortex-Induced (h) SMA Adaptive (i) LASMP Adaptive

Figure 2.15: Some nonlinear modulations incorporated into the cantilever design.
Letters (a), (b) and (c) are multistable devices induced by magnetic interactions.
Letters (d) and (e) are buckled bistable systems induced by compressive forces and
magnetic attraction, respectively. (f) A system with impact. (g) Vortex-induced
energy harvester, which has vibration and wind as energy input. (h) and (i) are
adaptive systems using synergistic usage of shape memory materials to change the
natural frequency of the system: the first is a shape memory alloy spring that can
change its natural stiffness by thermomechanical induced phase transformation, and
the last is a light-activated shape memory polymer that can modify its stiffness by
light-induced change of its molecular chains structures and connections.

New ideas for nonlinear modulations are still being developed. The synergis-
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tic use of smart materials is one possibility and two interesting designs make use
of shape memory materials to achieve adaptability in energy harvesting systems.
ADEODATO et al. [145] employed a Nitinol Shape memory alloy (SMA) spring
attached to the free end of the cantilever beam to alter the natural frequency of the
energy harvesting system by controlling the temperature. YUAN et al. [146] pro-
posed a strategy of using a light-activated shape memory polymer (LASMP) layer
attached to the cantilever beam to control the natural frequency of the structure.
In this case, the Young modulus of the LASMP can be adjusted according to the
level of light exposure. Finally, a quasi-zero-stiffness energy harvester was presented
by MARGIELEWICZ et al. [147], which is characterized by an almost flat potential
energy function, countering the drawbacks of multistable classical systems. How-
ever, the disadvantage of this method is that the quasi-zero module is composed
of three springs attached to the free end of the cantilever beam, making it difficult
to set up and potentially not a compact solution. Furthermore, some mechanical
modulations incorporated on cantilever-based energy harvesters described in this
chapter are illustrated in Figure 2.15.

Novel designs have also been presented in the literature. CAETANO & SAVI
[148] proposed a pizza-shaped system exploiting multiple degrees of freedom and
obtaining a broadband device, where it was concluded that irregular structures are
the most effective for enhancing energy harvesting capacity. Afterward, CAETANO
& SAVI [149] proposed a star-shaped device coupled with inertial pendulum-like
masses that provides either broadband characteristics or multidirectionality. YANG
et al. [150] suggested an enhancement to the cantilever design by incorporating an
arc-shaped segment that significantly improved its performance, and ZHOU et al.
[151] developed a distributed parameter model of this new harvester. Subsequent
works studied the incorporation of various types of multistability characteristics in
this type of structure with static [152–154] and variable potential aspects [155].
Nonlinear frequency-up conversion mechanisms [156, 157] showed to be capable of
converting a low-frequency external excitation motion into a higher frequency re-
sponse. In addition, other interesting subjects related to mechanical energy harvest-
ing are associated with nonlinear rotational harvesters [158], metastructures with
both vibration suppression and energy harvesting characteristics [159].

The design feasibility is restricted as many of the mechanical energy harvester
applications dispose of limited available space. The search for compact and efficient
solutions remains a challenge. To address this, WU et al. [2] successfully combined
the magnetically induced bistable concept with a dual beam compact structure they
had previously designed in WU et al. [1] to create a bistable dual beam energy har-
vester with a compact design and good performance. Subsequently, UPADRASHTA
& YANG [160] and KRISHNASAMY et al. [161] conducted finite element simula-
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tions and experiments to validate and formalize a distributed parameter modeling of
this design. This new nonlinear compact bistable harvester is illustrated in Figure
2.14b.

Another interesting concept that has been exploited in the literature is the ca-
pacity to harvest energy effectively in multiple directions. It has been shown that
leveraging pendulum structures to achieve multidirectionality is an interesting and
effective solution to achieve this goal. WU et al. [162] introduced a piezoelectric
spring-pendulum design based on a binder clip structure capable of scavenging ultra-
low frequency vibration across multiple directions. Several investigations presented
electromagnetic energy harvesters based on pendulum structures used for simultane-
ous multidirectional vibration mitigation and energy harvesting [163, 164]. Further-
more, the integration of pendulum structures with cantilever-type energy harvesters
as a form of nonlinear mechanical modulation has also been explored [165–167].
The advantages and disadvantages of this approach will be discussed in the fol-
lowing chapters. Pendulum structures, when coupled with magnetic interactions
between the pendulum’s tip mass and its surroundings, have demonstrated the po-
tential for achieving both multidirectionality and multistability within the same
system [168, 169]. Lastly, KUMAR et al. [170] proposed an electromagnetic energy
harvesting concept based on a base-excited double pendulum, designed to harness
energy from chaotic motion.
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Chapter 3

Nonlinear Dynamics Framework

In Chapter 2, an overview of several solutions for mechanical energy harvesting
is presented, with a notable emphasis on nonlinear structures. By examining the
literature, it became clear the absence of standardized methods for analyzing and,
more critically, comparing nonlinear energy harvesters. The prevalent presence of
potentially misleading analyses, which tend to showcase only the favorable attributes
of the studied harvester, further increases the challenge of conducting meaningful
comparisons with analogous devices. In response to these concerns, this Chapter
introduces an integrated set of theories and tools based upon a nonlinear dynamics
perspective that forms a robust and comprehensive framework, characterized by clas-
sical approaches and newly proposed tools. This approach is designed to facilitate
in-depth analyses of mechanical energy harvesters and enable proper comparisons
among different configurations. The proposed methodology is adopted in all analy-
ses within the scope of this thesis by utilizing the combination of classical nonlinear
dynamics techniques and measures related to energy harvesting performance assess-
ment. By doing so, it is possible to concurrently investigate different (positive and
negative) facets of the configurations proposed in this work. A detailed description
of all techniques utilized in the framework is elucidated in the next sections.

3.1 Classical Approaches in Nonlinear Analysis

This section presents a comprehensive review of the established nonlinear dynam-
ics methodologies documented in the literature that are employed in this study. It
also serves as a foundation for the introduction of the new integrated tools proposed
in this work. First, it is important to define the basics of a dynamical system. A
dynamical system can be represented by a system of first-order ordinary differential
equations of the type

ẋ(t) = f(x(t)), x(t) ∈ Rn. (3.1)
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This system can be viewed as a frame-by-frame description of reality, where
each frame represents the information of the state of the system at a given instant
of time. The dynamics of the system are fully described when the difference between
a previous instant of time and the next tends to zero. This system is then called a
continuous dynamical system.

Alternatively, a discrete dynamical system can be viewed as a map, that is, a
sequence of data of the form {x(t1),x(t2), · · · ,x(tNp)} that describes some infor-
mation of the system, where {t1, t2, ..., tNp} are discrete Np points in the time
continuum. In this regard, a specific kind of map, known as a Poincaré map, can be
defined.

3.1.1 Poincaré Map

A Poincaré map, named after Jules Henri Poincaré (1854 - 1912), can be defined
as a subspace of the state space of a n-dimensional dynamical system. This subspace
is defined as a section, Σp, placed in a transverse position, xp, to the vector field
formed by the response of the system within the state space. For a three-dimensional
system, the Poincaré section is a plane, whereas for a n-dimensional system with
n > 3, the Poincaré section is a hyperplane of dimension n−1. Formally, the method
to obtain the Poincaré map is to construct a transformation Pp such as

Pp : Sp → Σp, (3.2)

xp 7→ ς(xp, τp(xp)), (3.3)

where Up is the set of points in the state space, τp, is the time for the return of xp

to Σp, and ς defines the set of points in the map [171]. This process is illustrated in
Figure 3.1.

Figure 3.1: Poincaré Map of a three-dimensional orbit, where x1
p, x2

p, x3
p are the set

of points that compose the map.

In the context of a harmonically excited non-autonomous system, where the
excitation exhibits a well-defined period denoted as T, the characterization of a
periodic orbit becomes more explicit. In such a unique scenario, it becomes feasible
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to strategically position the Poincaré section along the temporal dimension of the
system, partitioning it into equally spaced intervals of duration T, as illustrated
in Figure 3.2a. Consequently, the geometrical representation of the orbit can be
accomplished using cylindrical coordinates, as depicted in Figure 3.2b.

By simply analyzing a reduced set of data, the Poincaré map allows the gathering
of important information on continuous trajectories within the state space of a
dynamical system. Therefore, a set of classifications can be done based on the
shape of the Poincaré map as shown in Table 3.1. In this work, this method is
widely used to study the periodicity of motion of the proposed energy harvesters.

(a)

(b)

Figure 3.2: Poincaré section Σp of an orbit of a two-dimensional non-autonomous
system with time-periodic terms. (a) (êy, êz, t) space. (b) (êy, êz, θ̂t) space.

3.1.2 Lyapunov Exponents

The analysis of the motion of a system is closely related to the system’s stability.
The Lyapunov exponents, named after Aleksandr Mikhailovich Lyapunov (1857 -
1918), quantify stability by assessing the average growth rate of initially small de-
viations, that is, the estimation of the sensitivity to initial conditions by evaluating
the local divergence of nearby orbits.

Consider a n-dimensional system and let δx = δ0êd be the initial perturbation of
a system in a single direction in its state space with respect to a reference solution
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Table 3.1: Poincaré map interpretation based on different map shapes (adapted from
MOON [4]).

Poincaré Map Shape Possible Interpretations

A finite number of points • Periodic or subharmonic oscillation

Closed curve • Quasiperiodic (two incommensurate frequencies present)

Open curve • Suggest modeling as a one-dimensional map (plot x(t) versus x(t+ dt))

Fractal collection of points • Strange attractor in three phase-space dimensions

Fuzzy collection of points • Dynamical system with random or noisy input
• Strange attractor, but the system has very small dissipation (need another

method to verify)
• Strange attractor in phase space with more than three dimensions
• Quasiperiodic motion with three or more dominant incommensurate frequen-

cies

of the system (fiducial trajectory), where δ0 is the magnitude of the perturbation,
and êd is an arbitrary orthogonal direction within the state space. Consider also a
discrete system given by xt+1 = f(xt). If the perturbation δx is applied to a specific
system state variable, its evolution can be expressed as

xt+1 + δxt+1 = f(xt + δxt)

≈ J(xt) · δxt + f(xt).
(3.4)

where J = (∂fi(x)/∂xj)êiêj is the Jacobian matrix of the system, meaning that the
product J(xt) · δxt is a linearization of the system in the vicinity of its solution. If
the gradient of a vector is defined as ∇a = ∇aj = (∂uj/∂xi)êiêj = Aij = A, then
the Jacobian matrix can also be written as J = ∇T f(x), where □T is the transpose
operator, a is a generic vector, and A is the resulting generic second order tensor.

Equation 3.4 leads to

δxt+1 = J(xt) · δxt = J(xt) · δ0êd. (3.5)

This perturbation can be represented by the radius of a hypersphere of dimension
n, centered at the initial state of the system. If the evolution of the perturbation
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vector is monitored across N time steps, the perturbation vector becomes

δxt+N ≈ J(xt+N−1) · J(xt+N−2) · · · · · J(xt) · δxt

=

[
N∏
k=1

J(xt+N−k)

]
· δxt

= J(xt)
N · δxt

= J(xt)
N · δ0êd.

(3.6)

being
∏

the product operator. Equations 3.5 and 3.6 are satisfied by the exponential
function written in Equation 3.7,

∥δxt+N∥ = eλN∥δxt∥, (3.7)

where λ is the largest average growing rate known as Lyapunov exponent [172].
Equation 3.7 can be generalized to any base, b, of reference, leading to1:

∥δxt+N∥ = bλN∥δxt∥. (3.8)

Considering Equation 3.8 and a continuous trajectory, the general definition for
the largest Lyapunov exponents is established by Equation 3.9:

λ = lim
t→∞

lim
∥δx0∥→0

1

t− t0
logb

(∥δx(t)∥
∥δx0∥

)
, (3.9)

where δx0 = δx(t0) = δ0êd is the initial perturbation vector, δx(t) is the function
that describes the evolution of the perturbation with respect to time, and t0 is the
initial time. Oseledec’s theorem [174, 175] states that this limit exists for almost
all initial conditions in the same basin of attraction. If the perturbation is given
in all orthogonal directions of the phase space, the Lyapunov exponents spectrum
λ = {λ1, λ2, · · · , λn} can be determined, where each exponent is related to the
average growth rate in a given direction.

In geometric terms, by monitoring the perturbation of the system while t in-
creases, the hypersphere evolves into a hyperellipsoid. This process is illustrated in
Figure 3.3 for a system with dimension n = 2.

1The Lyapunov exponents measure the rate at which the system processes create or destroy
information. Therefore, the base, b, determines the unit of the exponent. For example, for b = 2,
the unit of λ is [bit/s]. Alternatively, if b = e, the unit of λ is [nat/s] [173].
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Figure 3.3: Evolution of the system, where x(t) is the reference solution (fiducial
trajectory), and xi(t) (i = 1, 2) are the perturbed solutions.

Lyapunov exponents are invariants of the system’s dynamics, which means that
it is a measure that is independent of the initial conditions or a specific orbit in the
same basin of attraction. They serve as robust indicators of the system’s dynamical
behavior, as they are the measure of the divergence (expansion) or convergence
(contraction) of an orbit near a limit set. Therefore, once the largest exponent is
known, it is possible to characterize the system’s dynamics. If the largest exponent
is greater than zero (λ > 0), it characterizes a divergence between the reference
trajectory and the perturbed solution, meaning that the system is chaotic in nature.
The greater the value of λ is, the less the capacity of predictability of the chaotic
system for larger values of t. Additionally, if the system exhibits two or more positive
exponents, that is, more than one divergent direction, then its behavior is classified
as hyperchaotic.

Other values are dependent on the type of the system. For a non-autonomous
system, if the largest Lyapunov exponent is negative (λ < 0) it presents a conver-
gence between the reference orbit and the perturbed orbit, meaning that the system
exhibits periodic behavior. If λ = 0, in this case, the system manifests quasiperiodic
motion, that is, neither divergence nor convergence between orbits occurs. Alter-
natively, for autonomous systems, if the largest exponent is zero (λ = 0), it is said
that the system presents periodic motion as there is an additional exponent that
accounts for the time dimension, t. Additionally, for conservative systems, the sum
of all Lyapunov exponents must be zero, while for non-conservative systems, the
sum of all exponents must be negative. A list of behaviors based on the sign of the
exponents is exhibited in Table 3.1.2.
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Table 3.2: Characterization of system’s behavior based on the values in the Lya-
punov exponent spectrum of a n−dimensional system.

Behavior
λ

Non-autonomous systems Autonomous systems

Periodic {−,−, · · · ,−} {0,−, · · · ,−}

Quasi-periodic {0,−, · · · ,−} {0, 0, · · · ,−}

Chaotic {+,−, · · · ,−} {+, 0, · · · ,−}

Hyperchaotic {+,+, · · · ,−, · · · ,−} {+,+, · · · , 0, · · · ,−}

Furthermore, the results related to the Lyapunov exponents analysis in this thesis
are presented in the form of a Lyapunov Exponent Diagram (LED). An example
of an LED of the largest exponent, λ1, of a generic system is shown in Figure
3.4, where positive exponents are represented by rainbow colors, while grayscale
colors represent negative exponents. Further details regarding the methodology of
exponent convergence for the construction of the LEDs are elucidated in Appendix
B.4.

a

b

LED of λ1

λ
(min)
1

0

λ
(max)
1

Figure 3.4: Example of a Lyapunov Exponent Diagram (LED) of the largest ex-
ponent (λ1) of a generic system. a and b are generic system parameters. Rainbow
colors represent positive exponents, while grayscale colors represent negative expo-
nents.

3.1.3 Basins of Attraction

An attractor within the context of a dynamical system can be characterized as a
specific subspace, denoted as S, of its phase space such that for a variety of choices of
initial conditions, the system will evolve towards S. Formally, consider an evolution
operator, denoted as Ut, that acts on initial conditions x0 = x(t0) in Rn such that
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Utx0 = x(x0, t), where x ∈ Rn. Repeated applications of the Ut operator may take
the state of the system to a subspace S of Rn known as attractor [176].

For continuous systems, equilibrium points, stable limit cycles, periodic closed,
quasi-periodic, chaotic and hyperchaotic orbits can be cited as types of attractors.
In this context, for every attractor, its basin of attraction encompasses the set of
initial conditions that guide the system’s long-term behavior towards the attractor
itself [177].

In general, dynamical systems can exhibit more than one attractor in its state
space, leading to the possibility of the coexistence of solutions based on the initial
condition the system starts. In this context, there are regions within the state space
where one single attractor is dominant, whereas in other regions a fractal zone can
arise where various attractors are present. In the first case, a small perturbation in
the initial conditions leads to the same attractor, while in the second case, any small
perturbation of the initial conditions can lead to a different solution. Therefore,
the analysis of the basin of attraction of a system is essential as it informs the
predictability of a solution based on the initial conditions. Also, for a multistable
system, it can predict how many stable equilibrium points the system has, and the
chance of the system to rest at each stable condition based on its initial condition.
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Figure 3.5: Examples of basins of attraction. (a) The attractors are equilibrium
points. (b) The attractors are related to the type of motion of a system. x1 and x2
are generic state space variables and t0 represents the initial time.

Figure 3.5 depicts two examples of basins of attraction, where x1(t0)×x2(t0) are
the sets of initial conditions of an arbitrary system. Figure 3.5a shows the basins
of attraction where the attractors are equilibrium positions (SEPs) the system con-
verges after an adequate amount of simulation time. Alternatively, Figure 3.5b,
shows basins where the attractors are related to the type of motion. Regarding
mechanical systems, the type of basin presented in Figure 3.5a is usually associated
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with the solutions of a non-forced system, where the basins are associated with the
position the system rests after releasing it from a specific initial condition. Con-
versely, the type of basins presented in Figure 3.5b are associated with a forced
mechanical system, where the attractors are the steady-state orbits associated with
the dynamics of the system. In both cases, it is possible to observe areas within the
state space where the solution is predictable (regions with a consistent single color)
and areas that present fractal-like patterns that are associated with a higher degree
of unpredictability.

In the scope of this thesis, the basins of attraction are used to investigate different
characteristics of the compact multistable energy harvester in Chapter 5: The basins
related to the non-forced system are widely used to analyze stability states of the
system, while the basin related to the forced system is employed to study regions of
multiple solutions in its excitation parameter domain.

3.1.4 Characterization of the Equilibria

In the context of multistable systems, a stability analysis is essential to fully
characterize the system and its specific characteristics. Notably, for multistable
energy harvesters, the stability of the system is an interesting point to investigate
since it is directly related to the enhancement of the energy harvesting capacity. This
subsection dedicates special attention to this subject by describing the combination
of tools that are used in this work to characterize the stability of the compact
multistable energy harvester in Chapter 5.

Linear Stability Theory

The equilibrium configurations of a system can be determined by identifying the
solution of Equation 3.10.

ẋ = f(x) = 0. (3.10)

The nature of each equilibrium point can be determined through a linearization of
the system around each point, evaluating the Jacobian matrix, J = ∇T f(x).

The stability characteristics of each point are evaluated from the eigenvalues of
the Jacobian matrix, µj (j = 1, · · · , n), by solving det (J− µI) = 0. These points
can be classified into three sets:

1. Stable if {µj ∈ C | Re (µj) < 0,∀j};

2. Unstable if {µj ∈ C | Re (µj) > 0,∃j};

3. Center if {µj ∈ C | Re (µj) = 0,∃j}.
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Besides that, according to the Hartman-Grobman theorem, the stability of the lin-
earized system at the vicinity of an equilibrium point corresponds to the nonlinear
system as long as the point is hyperbolic, meaning that there is not an eigenvalue
that vanishes the real part (Re (µj) ̸= 0,∀j) [171]. Therefore, if there exists an eigen-
value with zero real part, that is, a center point, the stability of this point cannot
be determined with this approach and other techniques as Lyapunov functions, for
instance, must be used. For the multistable systems analyzed in this thesis all the
points showcased hyperbolic traits, which enables the usage of the linear stability
approach.
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Figure 3.6: Stability evaluation of (a) a bistable, (b) a tristable, and (c) a tetrastable
system. Each column represents the analysis of one system, with the top plot show-
ing its potential energy and the bottom diagram illustrating its basins of attraction.
Blue dots represent stable equilibria, while red diamonds render unstable equilibria.
Different colors within the basins of attraction depict different stable equilibrium
points to which the system converges after a reasonable period of evolution.

Evaluating the Stability

In order to fully characterize the system’s stability, a combination of three ap-
proaches was used in this work:

• Linear Stability Theory: To identify and classify the type of equilibrium
points of the system;
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• Basins of Attraction: To identify the combination of initial conditions that
leads the system towards an equilibrium position;

• The Potential Energy Function: To evaluate the energy thresholds re-
quired for transitions between stable equilibrium states.

The integration of these three approaches provides a comprehensive understanding
of the system’s stability characteristics. This knowledge is essential to better under-
stand the dynamical behaviors of the system, being an essential step in the analysis
of multistable energy harvesting systems. Figure 3.6 displays an example of the
stability analysis for different types of multistability, where x and ẋ are the state
space variables, while U(x) represents the potential energy. □0 is an index symbol-
izing the initial state. Blue circles illustrate stable equilibria, while red diamonds
illustrate unstable equilibria. Different colors in the basins of attraction portray the
stable equilibrium the system moves towards after a long time based on its initial
condition.

3.2 Proposed Approaches in Nonlinear Energy Har-

vesting Analysis

This section proposes a new set of tools designed to complement the analysis of
energy harvesting systems. The integration of these new proposed tools with the
classical approaches can provide a deep and robust understanding of the dynamical
and performance characteristics of an energy harvester.

3.2.1 Dynamical Response Diagrams (DRDs)

In order to analyze a dynamical system, it is important to characterize it with
proper tools and robustness. So far two classical methods of nonlinear dynamics
analysis have been presented in this regard: the Poincaré map and the Lyapunov
exponents. Both are suitable to determine some aspects of the behavior of a system,
but not all of them. In this section, we present an algorithm that seeks to better
classify the dynamical behavior of systems by the combination of both techniques.
The result of the algorithm is what we call a dynamical response diagram (DRD), in
which is possible to classify automatically different types of periodic and aperiodic
behaviors.

The DRDs can be used as a tool to map and quantify the dynamical attractors
of the system resulting from a specific initial condition within a 2D parameter space
of choice. The diagrams are built with a grid of Nx × Ny sample points, each of
which is obtained from a time series integration from t0 to tf considering a suitable
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integration time step. A time ttrans is chosen to determine when in the time series
the transient regime is considered to be over (usually it is chosen as ttrans > 0.7tf ).
Additionally, all the samples have the same initial conditions to standardize the
analysis.
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(incorrect)

Period-2
(correct)

x 1

x
2

Figure 3.7: Relying on the monitoring of a single state variable of the Poincaré map
points can lead to erroneous attractor classification due to the alignment of points.

From each sample, a behavior is classified. All classifications are based on the
Lyapunov exponents spectrum and the verification of the steady state Poincaré map.
Initially, the first two Lyapunov exponents, λ1 and λ2, are analyzed. The behavior
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Figure 3.8: Procedure to classify periodic attractors. a, b and c are arbitrary num-
bers to represent the real data. x1, x2, · · · , xn represent the n state variables within
the state space of the system. Light gray arrows followed by a "×" represent that
the two values compared are not equal. Alternatively, red arrows labeled as "="
represent positive equality in the comparison (ith position). Finally, the orange ar-
rows labeled with a ✓ represent the 2ith position at which the value is equal to the
ith position. The greatest orange value is chosen as the final classification, and it is
marked by the green checkmark.

is classified based on the values presented in Table 3.1.2 in which three of the four
behaviors are analyzed (periodic, chaotic and hyperchaotic). If the classification
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is chaotic or hyperchaotic, the classification procedure is over. Alternatively, if
the classification is periodic, then the Poincaré map of the steady state time series
sample is analyzed. A list of values with all the points of the Poincaré map is
loaded, and the last point is used as the reference. Then, the previous points are
analyzed one by one until it is found an equal at the ith position. After that, if it
finds another equal value in the 2ith position, then it can be classified as a i-periodic
candidate, if not, it continues to analyze previous points until these two conditions
are met. The same procedure is done for all dimensions of the system, and the
greatest periodic behavior found is used as the final classification. The comparison
for all state variables is needed as limiting the observation to only one direction
may yield misleading results of smaller periodicity due to the alignment of points
in this direction, as shown in Figure 3.7. To avoid numerical errors, a tolerance of
ptol = (xmax − xmin)Omethod for each state variable must be placed when comparing
the points, where xmax and xmin are the maximum and minimum values of the state
variable between ttrans and tf (steady state), and Omethod is the order of error of
the method of integration. The procedure depicting the comparison of the Poincaré
map data is illustrated in Figure 3.8.

Figure 3.9 depicts an example of a DRD of a generic a×b parameter domain with
phase spaces representing each corresponding color within the diagram. Different
periodicities are classified by colors, considering that T represents the excitation
period: dark gray (1T), yellow (2T), green (3T), orange (4T) and purple (5T). Light
blue is employed to represent responses with a period equal or greater than 6T, which
means multiple periods (MP). Red regions represent chaotic (CH) responses, while
dark red regions represent hyperchaotic (HC) responses. These responses can be
referred to as dynamical attractors since they represent either stable closed orbits
or strange attractors2. Also, Poincaré Maps, represented by the black dots in the
phase spaces (in the case of the dark gray attractor, the Poincaré map is represented
in red) are displayed as a visual representation of the periodicity of each orbit. A
discussion about the limitations of the DRDs is presented in Appendix B.4.

3.2.2 Output Power Diagrams (OPDs) and Performance

Comparison Diagrams (PCDs)

One-dimensional diagrams, typically frequency diagrams, are frequently used in
the literature to analyze the performance of energy harvesting systems [178–183].
While this method has its merits, with the growing number of proposed harvesters,
each with its own unique features and increasing complexity, this simplistic approach

2In this section the expressions attractors, responses and behaviors are used interchangeably to
refer to the same thing in the context of the dynamics of the system.
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Figure 3.9: Example of a Dynamical Response Diagram (DRD). Each color rep-
resents a dynamical response (attractor), as described in the text. Black circles
marked in the DRD represent selected cases to illustrate the system’s response type.
Each point is depicted within its respective phase space, colored accordingly, and ac-
companied by a Poincaré map of the specific attractor. In the case of 1T responses,
the Poincaré map is denoted by a red dot in the phase space plot, whereas for the
other attractors, it is represented by black dots.

is proving to be inadequate. This approach often restricts the scope of analysis to
a limited number of scenarios. Typically the authors vary one of all key parame-
ters (usually the amplitude or frequency of excitation) while keeping another key
parameter constant. Also, they only consider a small set of values for that con-
stant parameter. This practice can result in misleading conclusions as the entire
excitation parameter space is not well evaluated. This limitation is particularly
evident when comparing devices. Moreover, as computational power continues to
increase, the generation, acquisition, and manipulation of larger datasets are becom-
ing more feasible, even for entry-level personal computers. Consequently, the depth
and sophistication of energy harvesting analysis, for both numerical and experimen-
tal analyses, must progress to align with these technological advancements.

For this reason, in this work, the performance of the energy harvesters is eval-
uated in terms of a wider perspective, contemplating a considerable region of a
parameter space of choice (usually the excitation parameter space) and summariz-
ing the results in an Average Output Power Diagram (OPD)3.

3The OPD can also be referred as "Overall Performance Diagram" to specify that the OPD is
evaluating an alternative type of performance metric different from the standard average output
power.
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The construction of each OPD relies on a similar procedure of the construction
of the DRDs, using Nx ×Ny sample points, each of which has the same initial con-
ditions to standardize the analysis. However, instead of evaluating the attractors,
the OPDs show the steady state average electrical output power (or any variable
related to that) under excitation conditions. This type of two-dimensional perfor-
mance diagram is not new to the literature, it has been shown with other names in
other works [169, 184–188]. However, their application in a comparative scenario is
new.

In this context, a comprehensive performance evaluation of two harvester config-
urations is conducted using a Performance Comparison Diagram (PCD). Each point
on their respective Output Power Diagrams (OPDs) is compared using a percent-
age difference metric, denoted as ∆P (%), as outlined in Equation 3.11. Here, Pr

represents the performance metric of the reference harvester, while Ps denotes the
performance metric of the harvester under study.

∆P (%) =
Ps − Pr

Pr

× 100. (3.11)

Equation 3.11 is used to compute the percentage difference, which allows a classifi-
cation based on three sets:

• ∆P (%) > 0: The harvester under study shows better performance;

• ∆P (%) = 0: Both harvesters present the same performance;

• ∆P (%) < 0: The harvester used as reference shows better performance.

Figure 3.10 showcases an example of a performance analysis done utilizing OPDs
and a PCD. Specifically, Figure 3.10a shows an OPD for a generic reference harvester
configuration, while Figure 3.10b displays an OPD for a generic harvester config-
uration under study. The diagrams present a section of a generic two-dimensional
a× b parameter space. Within the OPDs, cold colors (purple, blue and light blue)
indicate regions of lower performance, while warmer colors (orange, red and dark
red) indicate regions of higher performance. Each OPD has its own colormap values,
indicated by the accompanying colorbar next to it. Moreover, Figure 3.10c displays
the PCD for the comparison of both harvesters, where red colors indicate regions in
which the harvester under study outperforms the reference harvester configuration,
while black color regions indicate that the reference harvester outperforms the har-
vester under study. Throughout the entirety of this work, the PCDs colorbars limits
are truncated by 50% to better illustrate the difference between the two harvesters.
In other words, the darker colors in each red or black colormap represent scenarios
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in which one harvester outperforms the other by a factor of 50% or more. Theoret-
ically, the limit of the red % is ∞, while the limit of the black values is −100%, as
the comparison is done utilizing the reference harvester as basis, as determined in
Equation 3.11.

a

b

(a) OPD of the reference harvester

a

b

(b) OPD of the harvester under study

0.00

7.85

15.69

0.00

2.91

5.82

a

b

(c) Resulting PCD

<−50%

0%

>50%

Figure 3.10: Diagrams used for performance analysis within the generic parameter
space a×b. (a) The Output Power Diagram (OPD) for a generic reference harvester
configuration. (b) The OPD for a generic harvester configuration under study. (c)
The Performance Comparison Diagram (PCD), showing the comparison of both
harvesters. Accompanying colorbars in (a) and (b) show the output power levels
of the associated OPD. The colorbar in (c) represents ∆P (%). The regions in red
represent where in the two-dimensional parameter space the harvester under study
outperforms the reference harvester, while black regions show the opposite.

With these integrated tools, it is possible to map and quantify the performance
of energy harvesters across a wide range of excitation conditions. Additionally, they
enable robust comparisons between different energy harvester configurations.

3.2.3 Dynamical Pattern Diagrams (DPDs)

The Dynamical Pattern Diagram (DPD) is an extension of the Dynamical Re-
sponses Diagram (DRD) that accounts for the classification and mapping of specific
dynamical patterns unique to a dynamical system. The type of the monitored trait
will depend exclusively on the type and characteristics of the system at hand. The
idea is to extend the standard classification of the DRD in some way. In the specific
context of this work, the DPDs are utilized to monitor whether the pendulum struc-
ture of the second proposed harvester oscillates, rotates, or presents a mix of the
two patterns. It also monitors if it is a regular pattern or an irregular pattern. An
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in-depth discussion about the DPD, the specific conditions of classification, and clas-
sification patterns is presented in Chapter 6, Subsection 6.5.4, as it directly relates
to the specific harvester analyzed in that Chapter.

3.2.4 Occurrence Diagrams (OCDs)

In general, nonlinear systems are characterized by their inherent complexity,
where a small change in a parameter can lead to very different results, rendering
the analysis of these systems a non-trivial task. To address that, it becomes ad-
vantageous to map specific characteristics within a parameter domain for a range
of values of system parameters and evaluate the occurrence of that characteristic
in each region of the parameter domain. The result of the analysis is summarized
in an Occurrence Diagram (OCD), allowing for a more informed estimation of the
likelihood of these target features emerging.

The procedure to construct an OCD involves the progressive analysis of different
2D diagram datasets. To illustrate this concept, consider a generic system charac-
terized by three parameters: a, b and c. Within the parameter domain defined by
a× b, n distinct diagrams are generated, each representing a different value of the c
parameter (c1, c2, · · · , cn). Suppose our goal is to visually depict the prevalence of
the red characteristic of the system and assess where, within the a × b parameter
domain, this characteristic is most prominent for a range of values of c.
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Figure 3.11: Procedure to construct the occurrence diagrams (OCDs). Red points
are related to the points that have the wanted characteristic, while gray points do
not have the wanted characteristic. For each red point, the location within the
diagram is marked as 1, while for each gray point, the location is marked as 0. The
resulting occurrence dataset is the sum of all datasets.
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To achieve this, we start by marking all data points exhibiting the red character-
istic with the number 1, and all the remaining data points that do not exhibit the
characteristic with the number 0. By summing up the values of each point in their
respective locations within the parameter domain, we produce a resulting dataset.
This dataset indicates how frequently the red feature appears at each unique point
within the parameter domain. This procedure is illustrated in Figure 3.11.
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Figure 3.12: In the first row are displayed 3 pseudo-random diagrams used to con-
struct the resulting OCD in the second row. The colorbar in the second row repre-
sents the likelihood of the red characteristic to emerge within the a × b parameter
space, based on the diagrams provided to construct the resulting OCD.

Moreover, 400 pseudo-random data were generated to simulate a data collection,
to provide a comprehensive view of how the number of analyzed sample diagrams
influences the resulting OCD. In Figures 3.12a, 3.12b and 3.12c, 3 of these data
collections are displayed in diagrams, which are used to construct the OCD. The
resulting OCD, presented in Figure 3.12d, indicates that the area within the param-
eter space a×b that the red characteristic is mostly likely to emerge is predominantly
centered at the intersection of the three red areas. This serves as a comprehensive
illustration of the procedure outlined in Figure 3.11. By increasing the number of
diagram samples to 400, as shown in Figure 3.13, the resulting OCD undergoes sig-
nificant changes, displaying a notable shift in the region where the red characteristic
is more likely to emerge. This result shows that the number of data available to
construct the OCD provides more accuracy in the predictions.

Another potential scenario of analysis that can arise in the making of an OCD
involves evaluating characteristics that can vary in value across different sample
diagrams. For instance, in the context of energy harvesting, this situation can
arise when assessing system performance, where performance metrics such as out-
put power can exhibit significant variations in maximum and minimum values from
one sample diagram to another. To account for these variations, a necessary nor-
malization step must be performed before the summation of each dataset. This
normalization takes the form of Equation 3.12, where Gnorm is the normalized value
of the generic characteristic, G, at each point in the single sample diagram, while

41



b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b

a

b

a a a a a a a a a a a a a a a a a a a

0 1a
0

1

b

(b) Resulting OCD

8.2%

33.8%

59.2%

(a) Group of datasets for c = (c1, c2, · · · , c400)

Figure 3.13: 400 pseudo-random diagrams are displayed and used to construct the
resulting OCD displayed at the bottom. The colorbar represents the likelihood of
the red characteristic to emerge within the a × b parameter space, based on the
diagrams provided to construct the resulting OCD.
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Gmax denotes the maximum value of this characteristic across all points within the
same diagram.

Gnorm =
G

Gmax

(3.12)

This normalization procedure results in all values within the sample diagrams being
scaled to the range [0, 1], providing a measure of the quality of the characteristic
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Chapter 4

Modeling Multistability

As discussed in Chapter 2, multistability can be induced by a wide array of
sources, including magnetic interactions, compressive forces, gravity, and more. In
its simplest manifestation, the constitutive relationship governing these interactions
with the structural elements can be reasonably approximated by a restitution poly-
nomial function, fr(x) = −dU(x)/dx, where U(x) is the potential energy associated
with the restitution force [5, 6, 122, 123, 189, 190]. To facilitate a deeper under-
standing, Table 4 provides a small compilation of common polynomial functions
employed to represent distinct stability conditions within single-degree-of-freedom
systems.

Table 4.1: Common polynomial functions used to represent different symmetric
stability conditions in a single-degree-of-freedom system.

Stability Restitution force, fr(x) Potential Energy, U(x)

Bistable a1x− a2x
3 −1

2
a1x

2 +
1

4
a2x

4

Tristable −a1x+ a2x
3 − a3x

5 1

2
a1x

2 − 1

4
a2x

4 +
1

6
a3x

6

Tetrastable a1x− a2x
3 + a3x

5 − a4x
7 −1

2
a1x

2 +
1

4
a2x

4 − 1

6
a3x

6 +
1

8
a4x

8

To encompass the concept of a (N +1)-stable system in a more generalized context,
one can formally express these relationships as Equations 4.1 and 4.2, as detailed
below:

fr(x) =
N∑
j=0

(−1)1+j+Naj+1x
2j+1, (4.1)

U(x) = −
∫ x

0

fr(x) dx = −1

2

N∑
j=0

(−1)1+j+N 1

j + 1
aj+1x

2(j+1). (4.2)
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Figure 4.1 depicts different symmetric stability conditions based on Equations 4.1
and 4.2.
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Figure 4.1: Restitution forces and potential energy functions for different symmetric
stability conditions represented in each column.

Equations 4.1 and 4.2 provide a generalized representation of fr(x) and U(x),
both of which require the inclusion of constant coefficients as essential input pa-
rameters. This approach may be inconvenient in certain situations, especially when
studying the qualitative characteristics of a system. In such cases, an alternative
approach emerges, offering the flexibility to select equilibrium positions. To explore
this option, consider the alternative formulations of restitution forces and potential
energies, conveniently outlined in Table 4 [127]. Here, pi, i(1, · · · , N) represent the

Table 4.2: Equivalent alternative form of polynomial functions used to represent
different stability conditions in a single-degree-of-freedom system, where the equi-
librium positions can be chosen by specifying the parameters pi, (i = 1, · · · , N).

Stability Restitution force, fr(x) Potential Energy, U(x)

Bistable −a1x

p21

(
x2 − p21

)
−1

2
a1x

2 +
1

4

a1
p21

x4

Tristable − a1x

p21p
2
2

(
x2 − p21

) (
x2 − p22

) 1

2
a1x

2 − 1

4

a1
(
p21 + p22

)
p21p

2
2

x4 +
1

6

a1
p21p

2
2

x6

Tetrastable − a1x

p21p
2
2p

2
3

(
x2 − p21

) (
x2 − p22

) (
x2 − p23

) − 1

2
a1x

2 +
1

4

a1
(
p21p

2
2 + p21p

2
3 + p22p

2
3

)
p21p

2
2p

2
3

x4

− 1

6

a1
(
p21 + p22 + p23

)
p21p

2
2p

2
3

x6 +
1

8

a1
p21p

2
2p

2
3

x8

modulus of the symmetric equilibrium points of the system, excluding the point
located at x = 0, which is always an equilibrium position. For N odd, x = 0 is
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an unstable equilibrium (peak), while for N even, x = 0 is a stable equilibrium
(well). Additionally, i odd values are stable equilibria (wells), while i even values
are unstable equilibria (peaks). Note that now, all coefficients are dependent on a1,
which is the absolute stiffness of the system around x = 0, and of the location of
equilibria. This way, it is easier to determine the coefficients ai based on the shape
of the restitution force and potential energy curves and the location of the equilibria.
Figure 4.2 shows a visual representation of N and pi, (i = 1, · · · , N) .

p2 p2p1 p1p1 p3

N = 3N = 1 N = 2

0 0 0

Figure 4.2: Illustrative representation of N and pi, (i = 1, · · · , N).

The restitution force expressions presented in Table 4 can then be generalized to
any symmetric multistable configuration in the form of Equation 4.3:

fr(x) = − a1x∏N
i=1 p

2
i

N∏
i=1

(
x2 − p2i

)
. (4.3)

The determination of the potential energy function is less trivial. For that,
consider the following transformations X = x2 and Pi = p2i , yielding:

fr(X) = − a1
√
X∏N

i=1 Pi

N∏
i=1

(X − Pi) . (4.4)

This facilitates the rewriting of Equation 4.4 in terms of elementary symmetric
polynomials1, ej, as:

fr(X) = − a1
√
X∏N

i=1 Pi

N∑
j=1

(−1)jej (P1, · · · , PN)X
N−j. (4.5)

Thus, as dX = 2xdx→ dx = dX/2
√
X, by integrating the force, the generalized

potential function can be derived as shown by Equation 4.6,

U(X) = −
∫ X

0

fr(X)

2
√
X

dX

=
1

2

a1∏N
i=1 Pi

N∑
j=0

[
(−1)j

N − j + 1
ej (P1, · · · , PN)X

N−j+1

]
.

(4.6)

1For reference about elementary symmetric polynomials, please refer to Appendix A.
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By substituting back X = x2 and P = p2, the generalized potential energy is
written in its final form as in Equation 4.7:

U(x) =
1

2

a1∏N
i=1 p

2
i

N∑
j=0

[
(−1)j

N − j + 1
ej
(
p21, · · · , p2N

)
x2(N−j+1)

]
. (4.7)

A summary of these equations is established in Table 4, where the final equations
that use coefficients ai, i = (1, · · · , N + 1) as input are referred to as first form
equations, and the final equations that use equilibrium positions pi, i = (1, · · · , N),
as input are named second form equations.

Table 4.3: Summary of the different forms of the generalized polynomial equations
used to represent symmetric multistability in single-degrees-of-freedom systems. The
first-form equations are used when the coefficients are known, while the second-form
equations are used when the equilibrium positions are known. ej(p21, · · · , p2N) is the
representation of elementary symmetric polynomials as detailed in Appendix A.

Designation Restitution force, fr(x) Potential Energy, U(x)

1st Form
N∑
j=0

(−1)1+j+Naj+1x
2j+1 −1

2

N∑
j=0

(−1)1+j+N 1

j + 1
aj+1x

2(j+1)

2nd Form − a1x∏N
i=1 p

2
i

N∏
i=1

(
x2 − p2i

) 1

2

a1∏N
i=1 p

2
i

N∑
j=0

[
(−1)j

N − j + 1
ej

(
p21, · · · , p2N

)
x2(N−j+1)

]

47



Chapter 5

The Compact Multistable Energy
Harvester

This Chapter is devoted to exploring the design concept of the novel compact
multistable energy harvester (CMEH), as well as detailing the underlying assump-
tions employed for its modeling.

Inspired by classical bistable energy harvesters and bistable dual-beam struc-
tures, and motivated by the trend of maximizing energy harvesting capabilities
through compact designs, in this Chapter we propose a new nonlinear dual beam
structure with two sets of magnets and transducers.

This goal is accomplished by building a classical bistable energy harvester but in-
troducing new relevant degrees-of-freedom by cutting off the main beam, and adding
an inner beam as done by [1, 2, 66, 67]. Furthermore, we have introduced a novel
element into the harvester by incorporating an additional set of magnetic interac-
tions and an extra piezoelectric transducer into the inner beam. Figure 5.1 presents
the conceptual design of the novel device compared with the classical bistable can-
tilever beam. This novel design offers a more efficient use of space and potentially
greater performance capabilities compared with the classical version. This design
enables efficient utilization of previously unused space and results in unprecedented
multistable characteristics, which can enhance the overall functionality of this type
of harvester.

5.1 Reduced Order Modeling

The proposed energy harvester is modeled by considering a 2-DoF (2-degrees-
of-freedom) multistable device assuming the first vibration mode as a reference, as
shown in Figure 5.2. This prototype represents the main characteristics of the energy
harvester, presenting 1-DoF for each beam. Therefore, by considering that subscript
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(a) Conventional Bistable 
     Energy Harvester

(b) Compact Multistable Energy 
     Harvester 

Cantilever beam

Magnets

Tip mass

Piezoelectric 
transducer

Mechanical 
Excitation

Figure 5.1: Conceptual representation of the novel energy harvester, illustrating its
compact and space-efficient design, which is comparable in size to the traditional
bistable energy harvester.

i = 1, 2 denotes the properties associated with each one of the two degrees-of-
freedom, mi represents the mass, ki is the equivalent stiffness and ci is the equivalent
mechanical dissipation coefficient. Additionally, piezoelectric patches are attached
to the structure and can be represented by the electromechanical coupling coefficient,
θi, an internal capacitance Cpi, and an internal resistance, Rpi.

The electrical circuits are assumed to be simple resistive circuits that are con-
nected to the piezoelectric elements, each with a load resistance, Rli. The output
voltage of each circuit is represented by vi(t), and the equivalent electrical resistance,
Ri, of each circuit is composed by the piezoelectric internal resistance and the load
resistance connected in parallel, such that Ri = RliRpi/ (Rli +Rpi).

θ2Rl2

θ1Rl1

c2

m2

k2

fm2
(z2)

m1

êx
êz

z1(t)c1

zb(t)

z2(t)

k1

fm1
(z1)

(b)

Piezoelectric 
Element 

Cpi
θiżi(t)

Rpi Rli

vi(t)

(c)

z1
z2

Figure 5.2: Lumped model representing (a) the compact multistable energy har-
vester structure, (b) the equivalent electrical circuit composed by the piezoelectric
element attached to a resistance, and (c) the respective positive zi directions for
each DoF of the reduced order model related to the beam’s structure.
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The system is subjected to a base excitation of zb = Ab sin (ωt), where Ab and
ω represent the excitation amplitude and frequency, respectively. Furthermore, the
displacement of each mass is represented by zi(t) and the respective positive direc-
tions related to the real harvester’s structure are presented in Figure 5.2c, that is,
when z1(t) is positive, the motion of the outer beam is directed upward, while when
z2(t) is positive, the motion of the inner beam presents a downward direction [161].
Also, the upper dot represents derivatives with respect to time, as □̇ = d□/dt, and
the effects of gravity are neglected.

The Euler-Lagrange equations are defined from 2 mechanical coordinates, z1(t)
and z2(t), and 2 electrical coordinates, ψ1(t) and ψ2(t), the magnetic flux linkages.
Therefore, it is assumed that u = [z1(t), z2(t), ψ1(t), ψ2(t)], resulting in the following
equation,

d

dt

(
∂L

∂u̇i

)
− ∂L

∂ui
+
∂D

∂u̇i
= 0, (5.1)

where the Lagrangian, L = T − U +We, is given by the sum of the kinetic energy,
T , the potential energy, U , and the total piezoelectric energy, We. Moreover, the
total energy dissipation is defined from the function D.

Within the context of the proposed system, and considering the motion of the
base magnet of the second degree-of-freedom negligible, one can apply the first
form of the restitution force function, expressed by Equation 4.1, in each degree-of-
freedom separately. For a set with two magnets, a maximum of two stable equilibria
arises at each DoF [5, 6], implying that N = 1 should be used, resulting in Duffing-
type restitution forces, and its respective potential energy functions of the form:

fmi
(zi) = −aizi(t)− bizi(t)

3, i = 1, 2; (5.2)

Um(z1, z2) =
2∑

i=1

1

2
aizi(t)

2 +
1

4
bizi(t)

4, (5.3)

where the coefficients a1i = ai and a2i = bi, for better readability (i = 1, 2). These
coefficients can be estimated by a polynomial fitting to experimental or numerical
data [186].

Considering these assumptions, the potential and kinetic energies can be written
as Equations 5.4 and 5.5, respectively, where Um is the magnetic potential and Us

is the potential energy of the structure.

U = Um + Us

=
1

2
(a1 + k1) z1(t)

2 +
1

4
b1z1(t)

4 +
1

2
a2z2(t)

2 +
1

4
b2z2(t)

4

+
1

2
k2 [z2(t)− z1(t)]

2 ,

(5.4)
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T =
2∑

i=1

1

2
mi [żi(t) + żb(t)]

2 . (5.5)

The piezoelectric effect is considered by the definition of the total piezoelectric
energy, We, as showed by PREUMONT [191], where the flux linkages are such that
ψ̇1(t) = v1(t) and ψ̇2(t) = v2(t). Therefore:

We =
2∑

i=1

[
1

2
Cpiψ̇i(t)

2

]
+ θ1ψ̇1(t)z1(t) + θ2ψ̇2(t) [z2(t)− z1(t)] . (5.6)

The total energy dissipation can be described by the sum of Rayleigh’s dissipation
function [192] and the electrical dissipation function as follows

D =
1

2
c1ż1(t)

2 +
1

2
c2 [ż2(t)− ż1(t)]

2 +
2∑

i=1

[
ψ̇i(t)

2

2Ri

]
. (5.7)

On this basis, by applying the Euler-Lagrange equations associated with the
set u of generalized coordinates, the electromechanical equations of the system are
determined:

m1z̈1 + c1ż1 − c2 (ż2 − ż1) + (k1 + a1) z1 + b1z
3
1 − k2 (z2 − z1)

− θ1v1 + θ2v2 = −m1z̈b;
(5.8)

m2z̈2 + c2 (ż2 − ż1) + a2z2 + b2z
3
2 + k2 (z2 − z1)− θ2v2 = −m2z̈b; (5.9)

Cp1v̇1 +
v1
R1

+ θ1ż1 = 0; (5.10)

Cp2v̇2 +
v2
R2

+ θ2 (ż2 − ż1) = 0. (5.11)

The terms (t) that indicate time dependency are conveniently suppressed to improve
readability.

A normalization approach, as detailed in Appendix C.1, is carried out by consid-
ering a reference length, L, and a reference voltage, V , resulting in the dimensionless
electromechanical equations given by Equations 5.12 to 5.15, where the terms (τ)
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that indicate normalized time dependency are also conveniently suppressed1.

¨̄z1 + 2ζ1 ˙̄z1 − 2ζ2 ( ˙̄z2 − ˙̄z1) + (1 + α1) z̄1 + β1z̄
3
1 − ρΩ2

s (z̄2 − z̄1)

− χ1v̄1 + χ2v̄2 = −¨̄zb;
(5.12)

ρ¨̄z2 + 2ζ2 ( ˙̄z2 − ˙̄z1) + α2z̄2 + β2z̄
3
2 + ρΩ2

s (z̄2 − z̄1)− χ2v̄2 = −¨̄zb; (5.13)

˙̄v1 + φ1v̄1 + κ1 ˙̄z1 = 0; (5.14)

˙̄v2 + φ2v̄2 + κ2 ( ˙̄z2 − ˙̄z1) = 0. (5.15)

The electromechanical system can be rewritten in its canonical form as follows:

˙̄q = f(q̄)

=



˙̄z1

−2ζ1 ˙̄z1 + 2ζ2 ( ˙̄z2 − ˙̄z1)− (1 + α1) z̄1 − β1z̄
3
1 + ρΩ2

s (z̄2 − z̄1)

+ χ1v̄1 − χ2v̄2 − ¨̄zb
˙̄z2

−1
ρ
[2ζ2 ( ˙̄z2 − ˙̄z1) + α2z̄2 + β2z̄

3
2 − χ2v̄2]− Ω2

s (z̄2 − z̄1)− ¨̄zb

−φ1v̄1 − κ1 ˙̄z1

−φ2v̄2 − κ2 ( ˙̄z2 − ˙̄z1)


, (5.16)

with q̄ = [z̄1(τ), ˙̄z1(τ), z̄2(τ), ˙̄z2(τ), v̄1(τ), v̄2(τ)] and dimensionless parameters re-
lated to equations of motion are presented in Table 5.1. Also, a proper comprehen-
sion of the system behavior needs to consider the normalized form of the potential
energy, expressed in Equation 5.17.

Ū =
1

2
(1 + α1) z̄

2
1 +

1

4
β1z̄

4
1 +

1

2
ρΩ2

s (z̄2 − z̄1)
2 +

1

2
α2z̄

2
2 +

1

4
β2z̄

4
2 . (5.17)

5.1.1 Performance Metrics

The performance analysis of an energy harvester device is usually defined by the
electrical output variables. In this regard, either instantaneous or average values
can be monitored. The instantaneous electrical power in each resistive circuit is
represented by Equation 5.18, where the subscript □i (i = 1, 2) represents each
degree of freedom analyzed, and □RMS indicate the root mean square value.

Pinsti(t) =
1

Ri

vi(t)
2, (5.18)

1Note that upper dots in the normalized case are related to the derivatives with respect to the
normalized time, as ˙̄□ = d□̄/dτ .
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Table 5.1: System parameters and values used in the analyses. The values presented
in this table are based on established literature sources [5, 6].

Parameter Description Symbol Definition Value

Linearized natural frequency of the 1st mass ω1

√
k1/m1 -

Linearized natural frequency of the 2nd mass ω2

√
k2/m2 -

Normalized time τ ω1t -
Normalized displacement of the 1st mass z̄1(τ) z1(t)/L -
Normalized displacement of the 2nd mass z̄2(τ) z2(t)/L -
Normalized voltage of the 1st circuit v̄1(τ) v1(t)/V -
Normalized voltage of the 2nd circuit v̄2(τ) v2(t)/V -
Normalized base excitation frequency Ω ω/ω1 0.01 → 10
Normalized base excitation amplitude γ Ab/L 0.01 → 1
Normalized base excitation displacement z̄b(τ) γ sin (Ωτ) -
Ratio of masses ρ m2/m1 1
Normalized damping coef. of the 1st mechanical DoF ζ1 c1/(2ω1m1) 0.025
Normalized damping coef. of the 2nd mechanical DoF ζ2 c2/(2ω1m1) 0.025
Ratio of linearized natural frequencies Ωs ω2/ω1 0.25 → 2.0
Normalized 1st restitution coef. of the 1st mechanical DoF α1 a1/(ω2

1m1) −2, 0, 1
Normalized 1st restitution coef. of the 2nd mechanical DoF α2 a2/(ω2

1m1) −1, 0, 1
Normalized 2nd restitution coef. of the 1st mechanical DoF β1 b1L2/(ω2

1m1) 1
Normalized 2nd restitution coef. of the 2nd mechanical DoF β2 b2L2/(ω2

1m1) 1
Normalized 1st piezo coupling coef. in the mechanical ODE χ1 θ1V/(k1L) 0.05
Normalized 2nd piezo coupling coef. in the mechanical ODE χ2 θ2V/(k1L) 0.05
Normalized 1st piezo coupling coef. in the electrical ODE κ1 θ1L/(Cp1V ) 0.5
Normalized 2nd piezo coupling coef. in the electrical ODE κ2 θ2L/(Cp2V ) 0.5
Normalized electrical conductance of the 1st circuit φ1 1/(Cp1R1ω1) 0.05
Normalized electrical conductance of the 2nd circuit φ2 1/(Cp2R2ω1) 0.05
Normalized output power of the 1st electrical DoF P̄inst1 (τ) Pinst1 (t)/(Cp1ω1V 2) -
Normalized output power of the 2nd electrical DoF P̄inst2 (τ) Pinst2 (t)/(Cp2ω1V 2) -

The average output power can, then, be evaluated by the sum of the average
output power of each circuit, as expressed in Equation 5.19.

Pavg =
2∑

i=1

Pavgi =
2∑

i=1

[
1

tf − t0

∫ tf

t0

Pinsti(t) dt

]
=

2∑
i=1

[
1

Ri

(
vRMS
i

)2]
. (5.19)

Furthermore, an average power density can be calculated by dividing the average
power by the number of degrees-of-freedom of the system (nDoF), resulting in Equa-
tion 5.20.

P den
avg =

Pavg

nDoF

. (5.20)

Based on these concepts and according to Table 5.1, the normalized average
electrical output power and the normalized average electrical output power density
can be determined by Equations 5.21 and 5.22, respectively.

P̄avg =
2∑

i=1

P̄avgi =
2∑

i=1

[
1

τf − τ0

∫ τf

τ0

P̄insti(t) dt

]
=

2∑
i=1

[
φi

(
v̄RMS
i

)2]
, (5.21)

P̄ den
avg =

P̄avg

nDoF

. (5.22)
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5.2 Stability Analysis

The magnetic interactions within the system and the elastic properties of the
structure have shown to be an interesting point to be investigated since they are
directly related to the possible stability states of the system, which, in turn, hold
the potential to amplify its energy harvesting capabilities.

Following the definitions presented in Chapter 3, Section 3.1.4, the equilibrium
configurations of the system can be determined by solving Equation 5.23.

˙̄q = f(q̄) = 0. (5.23)

Yielding a solution containing a group of sets of the form q̄ = {z̄1, ˙̄z1, z̄2, ˙̄z2, v̄1, v̄2}j ={
Z̄1, 0, Z̄2, 0, 0, 0

}
j

that determines each equilibrium position, where j determines
the specific set within the solution. The nature of each equilibrium point can be
determined through a linearization around each point, evaluating the eigenvalues of
the Jacobian matrix, J, displayed in Equation 5.24

J = ∇Tf(q̄)

=



0 1 0 0 0 0

−1− α1 − ρΩ2
s − 3β1z̄

2
1 −2 (ζ1 + ζ2) ρΩ2

s 2ζ2 χ1 −χ2

0 0 0 1 0 0

Ω2
s

2ζ2
ρ

−α2 + ρΩ2
s + 3β2z̄

2
2

ρ
−2ζ2

ρ
0

χ2

ρ
0 −κ1 0 0 −φ1 0

0 κ2 0 −κ2 0 −φ2


(5.24)

Results show that for this system, all solutions are hyperbolic and, additionally to the
definitions presented in Chapter 3, the unstable points can be split into two distinct
groups: saddle-type unstable points and source-type unstable points. Saddle-type
unstable points exhibit one positive eigenvalue, indicating the presence of a single
unstable direction. On the other hand, source-type unstable points exhibit two pos-
itive eigenvalues, indicating the presence of two unstable directions. Furthermore,
the stability analysis is further complemented by evaluating the normalized form of
the potential energy function, as detailed in Equation 5.17, and the basins of at-
traction of the non-forced system, providing a comprehensive understanding of the
system’s stability characteristics.

5.2.1 The Influence of Ω and ρ

The analysis of the influence of Ωs and ρ in the stability characteristics of the
system is now in focus. For that, consider the fixed set of restitution parameters
(α1, α2, β1, β2) = (−2,−1, 1, 1), associated with localized bistability in each DoF,
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as previously discussed in Chapter 4. The solution sets {z̄1, ˙̄z1, z̄2, ˙̄z2, v̄1, v̄2}j ={
Z̄1, 0, Z̄2, 0, 0, 0

}
j

allow the visualization of stability characteristics through the
subsets {z̄1, z̄2}j =

{
Z̄1, Z̄2

}
j
, and their respective subspace z̄1 × z̄2, as the other

values are zero and do not change. Consequently, from this point forward, the term
"basin of attraction" will be used as a shorthand for the expression "section of the
basin of attraction", as the basins of attraction of the system have 6 dimensions,
while the analysis is reduced to a section of the basin with 2 dimensions.

Figure 5.3 illustrates the stability for different values of Ωs, with a fixed mass
ratio of ρ = 1. The colorbar represents the potential energy levels, with darker colors
representing lower energies and lighter colors representing higher energies. Figure
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Figure 5.3: Stability configurations for a set of Ωs values, with a fix mass ratio of
ρ = 1. The colorbar indicates the potential energy level for each z̄1 and z̄2 positions.
Blue dots represent stable equilibria, orange triangles represent unstable saddle-type
equilibria, and red polygons represent unstable source-type equilibria.
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5.4 presents the basins of attraction for different Ωs using four colors to indicate
attractors, which are the stable equilibrium points (SEPi, i = 1, . . . , 4) where the
system converges to if released from initial conditions within the subspace domain
z̄1 × z̄2, where z̄1 ∈ [−2, 2] and z̄2 ∈ [−2, 2], and ˙̄z1 = ˙̄z2 = v̄1 = v̄2 = 0. In
both Figures, blue dots indicate stable equilibria, orange triangles indicate unstable
saddle-type equilibria and red polygons (diamonds) indicate unstable source-type
equilibria. Also, a grid of 2000× 2000 points is used in each basin plot.
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Figure 5.4: Basins of attraction for a set of Ωs values, with a fix mass ratio of ρ = 1.
Colors indicate the stable position the system is attracted to for each z̄1 and z̄2 initial
positions. Blue dots represent stable equilibria, orange triangles represent unstable
saddle-type equilibria and red polygons represent unstable source-type equilibria.

It is noticeable that for Ωs < 0.6, the system exhibits 9 equilibrium positions,
4 of which are stable, 4 are unstable saddle-type, and 1 is unstable source-type.
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The increase of Ωs results in a reduction of the distances between SEP3, SEP4,
and the saddle-type points in their vicinity, which elevates the potential energy
level of the local minima and decreases the likelihood of the system being attracted
towards SEP3 and SEP4. When Ωs reaches a value between 0.55 and 0.6, SEP3 and
SEP4 disappear, becoming new saddle-type unstable points. This behavior defines 5
equilibrium points, with 2 stable, 2 saddle-type unstable, and 1 source-type unstable.
Further, 2 of 3 unstable positions disappear between 0.6 < Ωs < 0.75, resulting in
a system with 3 equilibrium positions, of which 2 are stable and 1 is saddle-type
unstable. The configuration remains the same for Ωs > 0.75 and the potential energy
surface becomes thinner as Ωs increases.

The impact of the mass ratio, ρ, on the stability of the system is analyzed
in Figures 5.5 and 5.6, where Ωs is kept constant at 0.5. Results show that the
increase of ρ results in a slower reduction of the number of equilibrium points. This
can be attributed to the term ρΩ2

s in Equations 12 and 13, where the influence of
ρ is of first order and the influence of Ωs is of second order. Furthermore, ρΩ2

s =

m2ω
2
2/(m1ω

2
1) = k2/k1. By analyzing this term along with the results obtained in

this section, it is concluded that a softer inner beam in comparison to the outer
beam results in a more complex equilibrium state characterized by multistability,
while stiffening the inner beam leads to bistability.
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Figure 5.5: Stability configurations for a set of ρ values, with a fix natural frequency
ratio of Ωs = 0.5. The colorbar indicates the potential energy level for each z̄1 and z̄2
position. Blue dots represent stable equilibria, orange triangles represent unstable
saddle-type equilibria and red polygons represent unstable source-type equilibria.

Figure 5.7 presents an illustrative representation of the four possible stable equi-
librium states of the system. As depicted in Figures 5.7a and 5.7b, the stable
positions that persist under all stability configurations (SEP1 and SEP2) can be ob-
served, while Figures 5.7c and 5.7d show the stable positions that vanish at elevated
values of Ωs (SEP3 and SEP4) according to this model.
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Figure 5.6: Basins of attraction for a set of ρ values, considering a fix natural fre-
quency ratio of Ωs = 0.5. Colors indicate the stable position the system is attracted
to for each z̄1 and z̄2 initial position. Blue dots represent stable equilibria, orange
triangles represent unstable saddle-type equilibria, and red polygons represent un-
stable source-type equilibria.
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Figure 5.7: Representation of the four possible stable equilibrium states of the sys-
tem: (a) SEP1, (b) SEP2, (c) SEP3 and (d) SEP4.

5.2.2 The Influence of Different Magnetic Configurations

The magnetic restitution parameters (α1, α2, β1, and β2) represent the effects
of the magnetic field defined by the magnet positioning within the system and its
material properties. Different combinations of these parameters can also lead to
different stability conditions. Moreover, based on the previous analysis, it was shown
that the stiffening/softening of the inner beam relative to the outer beam can alter
significantly the stability characteristics of the system. This prior knowledge enables
a better understanding of the coupling effects of the magnetic interactions and the
elastic properties of the structure.

The relation k2/k1 = ω2
2m2/ (ω

2
1m1) = Ω2

sρ allows the elastic properties of the
system to be represented either by Ωs or ρ, as they change the k2/k1 relation at
different rates. Therefore, for this analysis Ωs is chosen to represent the stiffness
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Figure 5.8: Stability configurations for a set of Ωs values, with magnetic restitution
coefficients (α1, α2, β1, β2) = (−2,−1, 1, 1) and a fix mass ratio of ρ = 1. The first
row shows potential energy levels for each configuration (a) Ωs = 0.25, (b) Ωs = 0.5,
(c) Ωs = 1, and (d) Ωs = 2. The second row shows the basins of attraction evolution
for each configuration (e) Ωs = 0.25, (f) Ωs = 0.5, (g) Ωs = 1, and (h) Ωs = 2. Blue,
red and orange dots represent equilibria as previously described in the text. (i) One
possible representation of the stable equilibrium states as Ωs increases.

changes, and a constant value of ρ = 1 is assumed. With these assumptions in
place, additional stability analyses are conducted and summarized in Figures 5.8,
5.9, 5.10 and 5.11. Each figure represents a different configuration defined by a
set of values for the magnetic restitution parameters α1, α2, β1, and β2. In each
case, the stability state is determined for different values of Ωs. In the first row
(letters a, b, c and d) the potential energy levels are associated with the equilibrium
positions and their vicinity, while the second row (letters e, f, g and h) shows the
respective basins of attraction of each potential energy plot. In both rows, blue
dots, orange triangles, and red polygons represent the equilibrium position and its
respective nature. Also, for each case, the stability plots are followed by a possible
representation of the initial and final stable equilibrium states, related to the beam
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structure, as Ωs increases (letter i).
Figure 5.8 displays the case previously presented in subsection 5.2.1, with

(α1, α2, β1, β2) = (−2,−1, 1, 1), related to the configuration represented in Figure
5.8i where the two sets of magnets are set up in repulsive mode. In this case, for
low values of Ωs < 0.5, that is, when the inner beam is softer than the outer beam,
the system exhibits 9 equilibrium positions, 4 of them stable and 5 unstable, which
means that a tetrastable system is of concern. By increasing the stiffness of the in-
ner beam with respect to the outer beam, the structure’s restitution force becomes
stronger than the magnetic force, eliminating 6 equilibrium positions, and resulting
in a bistable configuration with 2 stable equilibrium positions and 1 unstable.
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Figure 5.9: Stability configurations for a set of Ωs values, with magnetic restitution
coefficients (α1, α2, β1, β2) = (−2, 1, 1, 1) and a fix mass ratio of ρ = 1. The first
row represents the potential energy levels for each configuration (a) Ωs = 0.25, (b)
Ωs = 0.5, (c) Ωs = 1, and (d) Ωs = 2. The second row represents the basins
of attraction evolution for each configuration (e) Ωs = 0.25, (f) Ωs = 0.5, (g)
Ωs = 1, and (h) Ωs = 2. Blue, red and orange dots represent equilibria as previously
described in the text. (i) One possible representation of the stable equilibrium states
as Ωs increases.

Figure 5.9 shows a case with (α1, α2, β1, β2) = (−2, 1, 1, 1). In this case, for
all values of Ωs, the system remains in bistable mode. A possible representation
of this case is presented in Figure 5.9e, where the set of magnets attached to the
outer beam remains in repulsive mode, while the set of magnets related to the inner
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beam is set up to attractive mode. With a softer inner beam, it tends to retain
the position of the inner beam close to zero as the magnetic force is stronger than
the inner beam structure’s restitution force. By increasing Ωs, the enhancement in
inner beam stiffness tends to increase the distance of its equilibrium position with
respect to the neutral axis, while reducing the distance of the outer beam equilibrium
position. Another possible representation of this case can retain the repulsive mode
of the inner beam, but with an increased distance between the magnets, sufficient to
not induce a change in stability of the inner beam, and remaining with the nonlinear
characteristics. The final state of this configuration, represented in Figure 5.9d, is
similar to the one shown in Figure 5.8d, but with a shorter distance between stable
equilibrium positions.
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Figure 5.10: Stability configurations for a set of Ωs values, with magnetic restitution
coefficients (α1, α2, β1, β2) = (0,−1, 1, 1) and a fix mass ratio of ρ = 1. The first
row represents the potential energy levels for each configuration (a) Ωs = 0.25, (b)
Ωs = 0.5, (c) Ωs = 1, and (d) Ωs = 2. The second row represents the basins
of attraction evolution for each configuration (e) Ωs = 0.25, (f) Ωs = 0.5, (g)
Ωs = 1, and (h) Ωs = 2. Blue, red and orange dots represent equilibria as previously
described in the text. (i) One possible representation of the stable equilibrium states
as Ωs increases.

Figure 5.10 represent a case with (α1, α2, β1, β2) = (0,−1, 1, 1). This case also
consists of a bistable characteristic for all values of Ωs analyzed. A possible represen-
tation for this configuration is presented in Figure 5.10e where the magnets related
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to the outer beam are set up in attractive mode, while the magnets of the inner
beam are arranged in repulsive mode. Similar to the previous case, a softer inner
beam presents a higher amplitude than the outer beam. The force transmitted by
the repulsive magnets to the beam structure causes a small deflection in the outer
beam, translating its equilibrium position off the neutral axis. By increasing Ωs,
the stiffness of the inner beam increases, leading to an increase in the deflection of
the outer beam, and a reduction in the reflection of the inner beam. Another rep-
resentation of this state can retain the repulsive characteristics of the outer beam’s
magnets but with increased distance between them. This would retain the nonlin-
ear characteristics but the forces between the magnets would not be sufficient to
induce more equilibrium positions. The final state of this configuration, represented
in Figure 5.10d, is similar to the final state configuration of the previous case, as
shown in Figure 5.9d.
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Figure 5.11: Stability configurations for a set of Ωs values, with magnetic restitution
coefficients (α1, α2, β1, β2) = (0, 1, 1, 1) and a fix mass ratio of ρ = 1. The first row
represents the potential energy levels for each configuration (a) Ωs = 0.25, (b)
Ωs = 0.5, (c) Ωs = 1, and (d) Ωs = 2. The second row represents the basins
of attraction evolution for each configuration (e) Ωs = 0.25, (f) Ωs = 0.5, (g)
Ωs = 1, and (h) Ωs = 2. Blue, red and orange dots represent equilibria as previously
described in the text. (i) One possible representation of the stable equilibrium states
as Ωs increases.

The last equilibrium state found is depicted in Figure 5.11. In this case, the
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system presents monostable characteristics for all values of Ωs. Possible represen-
tations of this state comprise the two sets of magnets set up in attractive mode or
repulsive mode, but with increased distance between magnets to make the magnetic
interactions weak, but remaining nonlinear.

5.3 Dynamical Analysis

This section presents a comprehensive analysis of the nonlinear dynamics and
performance of the proposed harvester. Initially, the more complex configuration
with (α1, α2, β1, β2) = (−2,−1, 1, 1) is chosen and a general overview of its character-
istics within the external excitation parameter domain is displayed. Subsequently,
based on the conclusions of the stability analysis presented in Section 3.1.4, eight
configurations with different magnetic and structural parameters are chosen and
labeled and a detailed performance analysis is conducted to determine the best op-
erational conditions of each configuration. These analyses allow the selection of a
better magnetic configuration for energy harvesting purposes. Then, a performance
comparison is performed between various designs within this configuration, each
featuring distinct elastic properties, and the classical bistable energy harvester.

5.3.1 General Overview of the System’s Dynamics and Per-

formance

The stability analysis shows that stiffening the inner beam with respect to the
outer beam changes completely the stability characteristics of the system. By chang-
ing either the value of ρ or the value of Ωs, it tends to converge to the same result at
different rates. Therefore, in the context of a dynamical perspective, it is reasonable
to vary one parameter keeping the other constant as done before.

A harmonic excitation displacement of the form z̄b = γ sin (Ωτ) is adopted to
represent the available ambient mechanical energy, being γ the normalized excita-
tion amplitude, and Ω the normalized excitation frequency. Numerical analyses are
carried out by evaluating the influence of the linearized natural frequency ratio pa-
rameter, Ωs, with a constant ρ = 1. The other parameters are summarized in Table
5.1. The analyses are based on the theory and the diagrams established in Chapter
3. The diagrams are built with a grid of 1000×1000 sample points within the γ×Ω

parameter domain, each of which is obtained from a time series from numerical in-
tegration employing the fourth-order Runge-Kutta method considering time steps
∆τ ∝ (T = 2π/Ω). For each sample point, 4000 excitation periods (4000T) are im-
posed, with the last 500 considered to be the steady state, that is, when τ ≥ 0.875τf .
τf denotes the final time of integration.
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Figure 5.12: DRDs for a configuration with 4 stable and 5 unstable equilibria (Ωs =
0.25). (b) Amplified region delimited by the black dashed square in (a). Each color
represents a dynamical attractor. White circles followed by numbers in (a) and (b)
represent examples of the attractors contained in the DRD. Three phase subspaces
of the system’s steady-state response (z̄1× z̄2, z̄1× ˙̄z1 and z̄2× ˙̄z2) are plotted, colored
and numbered according to the respective attractor marked in the DRDs.

The analysis is carried out by selecting two specific designs based on their sta-
bility characteristics: the first configuration features 4 stable equilibrium points,
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being characterized by Ωs = 0.25; the second configuration has 2 stable equi-
librium points, being represented by Ωs = 1.0. The initial conditions are
[z̄1 (0) , ˙̄z1 (0) , z̄2 (0) , ˙̄z2 (0) , v̄1 (0) , v̄2 (0)] = [1, 0, 1, 0, 0, 0], which correspond to
SEP2, a stable position that persists throughout all stability configurations with
(α1, α2, β1, β2) = (−2,−1, 1, 1). Using these diagrams, a comprehensive overview
of the system’s dynamical characteristics and performance at different operational
conditions are elucidated.

Figures 5.12, 5.13 and 5.14 depict examples of DRDs and LEDs for the two
treated configurations. Examples of the dynamical attractor for each configuration
are depicted in Figures 5.12 and 5.13, just below the corresponding DRDs. The
chosen examples are identified by white circles with numbered labels within the
DRDs. These labels represent the three phase subspaces (z̄1 × z̄2, z̄1 × ˙̄z1 and
z̄2 × ˙̄z2) of the system steady-state response, which are plotted, labeled, and color-
coded according to the attractor designation in the DRDs. The Poincaré maps are
depicted as dots in each phase subspace and the equilibrium positions discussed in
Section 3.1.4 are useful for spatial references in the z̄1 × z̄2 phase subspaces.

For the case of Ωs = 0.25, the orbits with periods of 2T, 3T and 4T are observed
to be trapped around SEP2, indicating that the system lacks sufficient energy to
overcome the local potential energy minima (potential energy well). In contrast, the
remaining examples display orbits with high amplitude displacements. The orbits
with periods of 1T and 5T are characterized by synchronized or nearly synchronized
behavior, where z̄1 and z̄2 show a coordinated motion, causing the system to oscillate
around only three equilibrium positions. Conversely, the orbits characterized by
multiple periods (MP), chaos (CH), and hyperchaos (HC) exhibit desynchronized
or complex behavior, leading the system to visit all possible equilibrium points.

The case with Ωs = 1.0 reveals that the example orbits with periods of 1T and
5T are trapped around stable equilibrium positions, with the 5T orbit being confined
around SEP2, and the 1T orbit being confined around SEP1. In general (for any case
of Ωs), this suggests that the system dynamics may start at one stable equilibrium
position (SEP2) and end up being trapped around another (SEP1) due to transient
motion. The remaining periodic example orbits show high amplitude displacements
and visit all the equilibrium positions, leading to synchronized or nearly synchronized
behavior as depicted in the phase subspaces z̄1 × ˙̄z1 and z̄2 × ˙̄z2 of each example.
The chaotic (CH) and hyperchaotic (HC) examples, similar to previous cases, also
show high amplitude displacements and exhibit desynchronized or complex behavior.
Therefore, an effort is made to select orbits that differed from those chosen in the
previous case, highlighting that these classified dynamical attractors merely indicate
the periodicity of motion, and not necessarily the amplitude of motion or complex
behaviors as synchronization.
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Figure 5.13: DRDs for a configuration with 2 stable and 1 unstable equilibrium
points (Ωs = 1.0). (b) Amplified region delimited by the black dashed square in (a).
Each color represents a dynamical attractor. White circles labeled by numbers in
(a) and (b) represent examples of the attractors contained in the DRD. Three phase
subspaces of the system’s steady-state response (z̄1 × z̄2, z̄1 × ˙̄z1 and z̄2 × ˙̄z2) are
plotted, colored and numbered according to the respective attractor marked in the
DRDs.
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Finally, it is also important to note that the distinction between chaotic and
hyperchaotic attractors is based on the number of instability directions. Chaotic
attractors are represented by a single positive Lyapunov exponent (λ1 > 0) with the
remaining being negative, whereas hyperchaotic attractors have at least two positive
exponents (λ1 > 0 and λ2 > 0). This can be observed in the Lyapunov Exponent
Diagrams (LEDs) presented in Figure 5.14.
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(b) λ1 LED for Ωs = 1.0
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(c) λ2 LED for Ωs = 0.25

0.01 2 4 6 8 10

Ω

0.01

0.5

1

γ

1

2

3

4 5
67

8

(d) λ2 LED for Ωs = 1.0
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Figure 5.14: Lyapunov Exponent Diagrams (LEDs) for the two largest exponents (λ1
and λ2) for each case of Ωs: (a) λ1 for Ωs = 0.25, (b) λ1 for Ωs = 1.0, (c) λ2 for Ωs =

0.25, and (d) λ2 for Ωs = 1.0. Rainbow colors represent positive exponents, while
grayscale colors represent negative exponents. White circles followed by numbers
represent the attractors exemplified in Figures 5.12 and 5.13.

Energy harvesting performance is now in focus. Figure 5.15 presents the average
output power diagrams (OPDs) for the two configurations of Ωs = 0.25 and Ωs = 1.0.
The OPDs are divided into six sub-figures, with Figures 5.15a and 5.15b showing
the contribution of the first degree of freedom to the performance, Figures 5.15c
and 5.15d displaying the contribution of the second degree of freedom, and Figures
5.15e and 5.15f showing the overall average output power converted by the harvester.
The accompanying colorbars illustrate the quality of performance, with blue to red
hues indicating good performance and purple hues indicating poor performance, as
defined by the colormap. To facilitate interpretation, the range of each colorbar
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is restricted to a specific limit value. The uppermost value on the peak of the
top colorbar arrow represents the maximum average output power attained by the
harvester.
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Figure 5.15: Average Output Power Diagrams (OPDs) for: Ωs = 0.25 (1st column)
and Ω = 1.0 (2nd column). The first row displays the contribution of the 1st DoF to
the average output power, while the second row shows the contribution of the 2nd

DoF. The third row displays the overall harvester P̄avg for each value of Ωs. The
areas defined by dashed polygons and numbered circles are discussed in the text.

For the case of Ωs = 0.25, the first degree of freedom exerts greater influence in
a large region in the parameter domain, and the second displays a considerable con-
tribution in higher frequencies. Region B, delimited by the white dashed polygon,
shows a scenario where the second degree of freedom presents high performance,
while the first degree of freedom shows less performance, which illustrates a circum-
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Figure 5.16: Steady state timeseries of each numbered point marked in Figure 5.15.
The z̄1 and z̄2 positions, the z̄2− z̄1 relative position, and the output voltages v̄1 and
v̄1 and v̄2 are plotted and colored according to legend. Each one of the four groups
of plots is numbered according to the respective point marked in the OPDs.

stance of transmissibility of energy within the system. In contrast, both degrees
of freedom contribute effectively in region A, delimited by the black dashed rect-
angle. This result can be seen in the overall OPD in Figure 5.15e. In this region,
hyperchaotic and periodic 3T attractors are predominant according to Figure 5.12.

In the second case of Ωs = 1.0, a similar scenario can be observed where the
first degree of freedom exerts greater influence in the performance, and the second
displays a good contribution in higher frequencies and a small frequency band in low
frequencies. Similarly to the previous case, region D, delimited by a black dashed
rectangle, is characterized by the effective contribution of both degrees of freedom to
the performance, while the white dashed region, E, demonstrates a scenario in which
only the first degree of freedom contributes effectively to the power conversion. The
predominant attractors of these regions are 1T and chaotic according to Figure 5.13.

In terms of maximum output power, the case in which Ωs = 1.0 performs better,
although the points of very high performance (near P̄ (max)

avg ) for the second DoF are
scarce. In contrast, the areas with high performance of the second DoF in the case of
Ωs = 0.25 are more consistent. In general, the best overall power output regions of
the two cases are similar. The yellow dashed areas labeled as C and F, respectively
for each case, are characterized by a portion of intermittent irregular sparse points
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of high and low performance. This is a characteristic of nonlinear systems that
exhibit multiple solutions based on their initial conditions. This complexity is further
illustrated by the DRDs in Figures 5.12 and 5.13, displaying a high probability of
two or more attractors arising in these areas, instead of a concise area of a single
dynamical attractor. In these areas, the knowledge of the probability of a dynamical
attractor arising in each point of the diagram combined with a suitable smart control
system needs to be incorporated into the system to ensure dynamical stability in
these high-performance attractors at operation conditions. This specific zone and
its properties will be further explored in Subsection 5.3.3.

Points were marked in Figure 5.15 for each white and black dashed area to
exemplify the dynamics of interest of each region. Figure 5.16 displays the steady
state time series for the positions z̄1 and z̄2, the relative position z̄2 − z̄1, and the
output voltages v̄1 and v̄2 for each of these points. Plots (1) and (3) illustrate
the behavior in which both degrees of freedom contribute effectively to the power
conversion (black dashed regions A and D, respectively), while plots (2) and (4)
exemplify the behavior in which only one degree of freedom contribute effectively
for the power conversion (white dashed regions B and E, respectively).

In general, these examples indicate that the energy conversion is proportional
to the displacements: the output voltage v̄1 is proportional to the displacement of
the first DoF z̄1, while the output voltage v̄2 is proportional to the relative position,
z̄rel = z̄2− z̄1. This is expected as it is tangible to imagine that the resulting strain in

(a) (b)

Figure 5.17: Representation of the possible linear vibration modes of the system.

the piezoelectric element of the second DoF depends on the relative position between
DoFs, suggesting that in-phase synchronization between DoFs, that is, when the
outer beam is moving upwards and the outer beam is moving downwards, makes
only one DoF contribute effectively in the power conversion, while desynchronized,
out-of-phase and anti-phase synchronized behavior makes the two DoFs contribute
effectively in the power conversion. The way the system behaves in these cases is
closely related to the linear modes of vibration of the structure, which are exemplified
in Figure 5.17.

To further investigate the regions with high performance, the maximum power
output, P̄ (max)

avg , for each value of excitation amplitude, γ, is marked as colorful points
in the OPDs as shown in Figures 5.18a and 5.18b for the cases of Ωs = 0.25 and
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Ωs = 1.0, respectively. Grayscale colors represent the OPD for reference. The
colorbar next to the OPDs represents the value of the average output power of
each point of maximum. For Ωs = 0.25, it is observed that P̄ (max)

avg steadily grows
as γ increases, with a larger occupation of the diagram. In addition, the region
between Ω ≈ 4 → 7 exhibits the maximum values of output power. In contrast, for
Ω = 1.0, the values of P̄ (max)

avg are concentrated in the Ω ≈ 1 → 7 interval of excitation
frequency, with the maximum values occurring in a similar range of frequencies as
the previous case.

Constant values of γ are selected in each diagram, labeled as G (γ ≈ 0.2), H
(γ ≈ 0.6) and I (γ ≈ 0.9) for the Ωs = 0.25 case, and J (γ ≈ 0.1), K (γ ≈ 0.3)
and L (γ ≈ 0.5) for the Ωs = 1.0 case. They are displayed in Figures 5.18c and
5.18d, showing similar bandwidths of operation. Three points of maximum output
power for each case are marked with red circles and labeled with numbers 1 to
3. The three phase subspaces (z̄1 × z̄2, z̄1 × ˙̄z1 and z̄2 × ˙̄z2) and their respective
Poincaré maps are displayed below each case, labeled according to their respective
point of maximum. The colors of the phase subspaces correspond to the dynamical
attractors classified in Figures 5.12 and 5.13 and the respective equilibrium points
of each case are included as a spatial reference in the z̄1 × z̄2 phase subspaces.

These results show that the regions of high performance are characterized by a
high amplitude displacement of each degree of freedom of the proposed harvester
that courses around or through all equilibrium positions. However, point 1, which
exhibits the P̄ (max)

avg orbits for γ ≈ 0.1, shows an exception to this statement, where
the system does not have enough input energy to overcome the system potential
barriers, being trapped around the stable equilibrium position. This represents a
worst-case scenario for this type of harvester, presenting low power output, and is a
characteristic present in several classical multistable harvesters in the literature.

In order to comprehensively characterize the high-performance dynamics of the
harvester, the analysis presented in Figures 5.18 are extended to encompass a
broader range of values for the parameter Ωs. For each value of Ωs, the points
of maximum average output power as a function of γ are selected, and for each
one of these points, the corresponding dynamical attractor is carefully accounted
for. Results of this investigation are summarized in Figure 5.19, which provides a
comprehensive overview of the occurrence of each dynamical attractor in points of
maximum performance. It is observed that for cases where the harvester exhibits 9
equilibrium positions (Ωs < 0.75), maximum performance characteristics are asso-
ciated with 3T attractors, followed by 1T attractors. While 2T and 5T, as well as
high periodic (MP) and aperiodic (CH and HC) attractors, also occur, they are not
predominant. In contrast, for systems with 3 equilibrium states (Ωs ≥ 0.75), the
predominance of 3T attractors decreases, while the occurrence of MP, CH and HC
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Figure 5.18: P̄ (max)
avg as a function of γ for (a) Ωs = 0.25 and (b) Ωs = 1.0. Panels (c)

and (d) display the slices G, H, I and J, K, L, respectively, of the OPDs for three
values of γ in each case, with red circles marking the maximum power achieved
for each slice. For further analysis of the system’s steady state response under
high-performance conditions, three phase subspaces (z̄1 × z̄2, z̄1 × ˙̄z1 and z̄2 × ˙̄z2)
and Poincaré maps are provided, labeled according to their respective points in the
OPDs. To facilitate the visualization, the non-maximum values of the OPD are
plotted in grayscale in (a) and (b).

72



Ωs = 0.25 Ωs = 0.5 Ωs = 0.75 Ωs = 1.0
0

20

40

60

80

100
%

o
f

m
a
x
im

u
m

o
u
tp

u
t

p
ow

er
a
tt

ra
ct

o
rs

1
0
.9

9

2
7
.9

2
2
.9

1
.5

1
.4 2 0
.3

7
2

6
6
.9

4
7
.4

3
3

0 0 0
.1

00
.9 2
.5

0
.1

0

5
.1

4
.8

1
.1 6

.98
.8 1

3
.8

1
1
.7

1
4

0
.8 1
.6

9
.7

2
2
.9

(a)

1T 2T 3T 4T 5T MP CH HC

Ωs = 1.25 Ωs = 1.5 Ωs = 1.75 Ωs = 2.0
0

20

40

60

80

100

%
o
f

m
a
x
im

u
m

o
u
tp

u
t

p
ow

er
a
tt

ra
ct

o
rs

1
7
.7

2
1
.8

3
5
.3 4

4
.7

0 0 0
.2

0
.2

2
7
.3

2
0
.7

2
0

1
9
.3

0 0 0 00 0 0 0

4
.1 5
.8

2
.9

0
.2

2
1
.4 2
7
.8

2
9
.9

2
9
.7

2
9
.5

2
3
.9

1
1
.7

5
.9

(b)

1T 2T 3T 4T 5T MP CH HC

Figure 5.19: Characterization of the high-performance dynamics of the harvester:
Percentage of occurrence of attractors of the points of maximum average out-
put power as a function of γ for (a) Ωs = {0.25, 0.5, 0.75, 1.0} and (b) Ωs =
{1.25, 1.5, 1.75, 2.0}.

attractors increases. Notably, 2T, 4T and 5T attractors rarely appear in any of the
cases studied.

5.3.2 Performance Considering Different Magnetic Configu-

rations

In this subsection, the performance characteristics of the system considering
different magnetic configurations are of concern. Based on the conclusions of the
stability analysis, eight configurations with different magnetic and structural param-
eters are chosen and labeled, being summarized in Table 5.2. The choice of these
parameters is based on the qualitative behavior of the multistability formulation
presented in Chapter 4 and in value ranges already presented in prior investigations
of multistable systems in the literature [5, 6, 65, 123, 193–197]. For each set of
magnetic arrangements, two values of Ωs are chosen (0.25 and 1), enabling a general
overview of the system’s performance across each set of magnetic restitution param-
eters. Furthermore, the analysis is divided into two aspects, considering lower and
higher levels of input mechanical excitation amplitude, γ.
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Table 5.2: Stability configurations based on the combination of different magnetic
and structural parameters.

Magnetic Structural Stability Configuration

α1 α2 β1 β2 ρ Ωs

−2 −1 1 1 1
0.25 Tetrastable I

1 Bistable II

−2 1 1 1 1
0.25 Bistable III

1 Bistable IV

0 −1 1 1 1
0.25 Bistable V

1 Bistable VI

0 1 1 1 1
0.25 Monostable VII

1 Monostable VIII

Numerical investigations are performed employing average output power dia-
grams (OPDs). The initial conditions for each point within the diagrams are based
on the stable position {z̄1, ˙̄z1, z̄2, ˙̄z2, v̄1, v̄2} =

{
Z̄1, 0, Z̄2, 0, 0, 0

}
represented by the

black basin of attraction (SEP2) for the configurations I to VI at Ωs = 0.25, and
the only stable position for the configurations VII and VIII. By utilizing these di-
agrams, a comprehensive overview of the qualitative performance characteristics of
the system under different excitation conditions is presented.

Performance at High Amplitude Mechanical Excitation

Figure 5.20 depicts the OPDs for the configurations with Ωs = 0.25, as described
in Table 5.2. The colorbars accompanying each diagram represent the average out-
put power levels, restricted to a specific limit value to facilitate interpretation. The
uppermost values indicated by the peak of the colorbar arrow represent the maxi-
mum normalized output power achieved by the harvester. By examining the OPDs
at higher excitation amplitudes (γ ≥ 0.5), it is evident that configurations I and
III outperform the others for lower frequencies (0.01 ≤ Ω < 3). These configura-
tions exhibit larger regions characterized by good output power values, represented
by shades of blue. Moreover, configurations I and V demonstrate larger regions
associated with very high output power (shades of red) for mid-range frequencies.
It should be noted that configuration III displays shorter, scattered regions of very
high performance, which can be primarily related to the presence of multiple solution
branches (dynamical attractors) associated with low and high performance, these
regions present similar behavior to the specific zones that will be further discussed
in Subsection 5.3.3. Nonetheless, configuration III shows small regions of superior
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Figure 5.20: OPDs for the configurations with Ωs = 0.25: (a) Config. I, (b) config.
III, (c) config. V, and (d) config. VII. Colorbars represent P̄avg levels, restricted to
a limit value. The peak value on the colorbar arrow signifies the maximum output
power achieved by the harvester. White lines with capital letter labels are discussed
in the text and are represented by the frequency response diagrams in Figure 5.21.

performance at lower γ values (0.5 ≤ γ ≤ 0.6) when compared to configurations I
and V.

Notably, in the case of higher frequencies (7 ≤ Ω ≤ 10), configuration III exhibits
superior performance. Conversely, configuration VII consistently demonstrates the
worst performance across all examined scenarios.

These findings can be further illustrated in Figure 5.21, which provides a visual
representation of the output power for constant values of γ, denoted as A (γ ≈ 0.5),
B (γ ≈ 0.7) and C (γ ≈ 0.9) in each OPD presented in Figure 5.20. Notably,
configuration I, characterized by tetrastability, demonstrates superior performance
in terms of both bandwidth and maximum output power for γ ≈ 0.5 and γ ≈ 0.7.
Conversely, configurations III and V, associated with bistability, exhibit similar
performance characteristics, while configuration VII, associated with monostability,
consistently displays the poorest performance. Furthermore, for values γ ≈ 0.9,
all configurations demonstrate comparable performance, although configuration VII
exhibits a slightly lower maximum output power when compared to the other con-
figurations.

Details about each kind of behavior can be observed in Figures 5.22 and 5.23
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Figure 5.21: Average output power for different γ values. (a) Config. I, (b) config.
III, (c) config. V, and (d) config. VII. Each level of γ is highlighted by a distinct
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Figure 5.22: Phase subspaces z̄1× z̄2, z̄1× ˙̄z1 and z̄2× ˙̄z2 of the steady state response
of the system. Each set of subspaces represents each red point marked and labeled
as 1, 2, 3 and 4 in Figure 5.21. The associated equilibrium positions are displayed
in each z̄1 × z̄2 subspace for spatial reference. Poincaré maps are highlighted in red
or black to indicate the type of dynamical response of the system.

that present phase subspaces z̄1× ˙̄z1, z̄2× ˙̄z2, and z̄1× z̄2 of points 1 to 8 situated at
the vicinity of maximum output power values in Figure 5.21. Equilibrium points of
the corresponding configuration in the z̄1× z̄2 are also displayed for spatial reference.
These figures offer insights into the type of motion that leads to high performance
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Figure 5.23: Phase subspaces z̄1× z̄2, z̄1× ˙̄z1 and z̄2× ˙̄z2 of the steady state response
of the system. Each set of subspaces represents each red point marked and labeled
as 5, 6, 7 and 8 in Figure 5.21. The associated equilibrium positions are displayed
in each z̄1 × z̄2 subspace for spatial reference. Poincaré maps are highlighted in red
or black to indicate the type of dynamical response of the system.

under high-amplitude excitation. Essentially, the eight cases can be categorized into
two sets based on the shape of the orbits. The 1T grey orbits of high performance are
found in intermediary values of frequency, while the 3T orbits of high performance
are found in higher values of frequency.

Figure 5.24 depicts the performance analysis for different configurations of the
harvester with Ωs = 1, as shown in Table 5.2, considering values of γ ≥ 0.5. In this
scenario, the careful observation of the OPDs points to greater overall bandwidth
and maximum output power for configuration II. Configurations IV and VI present
very similar performance to each other, and configuration VIII displays the worst
performance. In a supplementary manner, Figure 5.25 shows that the difference in
performance between configurations II and configurations IV and VI is reduced as γ
increases. Nevertheless, configuration VIII, associated with monostability, displays
the worst performance.

Overall, this subsection demonstrates that in scenarios with higher amplitude
excitations (γ ≥ 0.5), the configurations associated with the magnetic parameters
(α1, α2, β1, β2) = (−2,−1, 1, 1) exhibit superior performance. Conversely, configura-
tions associated with monostability consistently display the worst performance.
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Figure 5.24: OPDs for the configurations with Ωs = 1: (a) Config. II, (b) config.
IV, (c) config. VI, and (d) config. VIII. Colorbars represent P̄avg levels, restricted to
a limit value. The peak value on the colorbar arrow signifies the maximum output
power achieved by the harvester. White lines with capital letter labels are discussed
in the text and are represented by the frequency response diagrams in Figure 5.25.
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Figure 5.25: Average output power for different γ values. (a) Config. II, (b) config.
IV, (c) config. VI, and (d) config. VIII. Each level of γ is highlighted by a distinct
color: black for γ ≈ 0.5, orange for γ ≈ 0.7, and red for γ ≈ 0.9. γ values are
represented in Figure 5.24 by labels D, E and F. Power values are scaled by ×10−3.
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Performance at Low Amplitude Mechanical Excitation

Henceforth, the performance associated with lower amplitude excitation scenar-
ios is of concern. By analyzing Figures 5.20 and 5.24, it is noticeable that, for all
cases, lower excitation amplitudes coupled with higher excitation frequencies results
in negligible output power, configuring regions of poor performance. Therefore, to
focus on the significant excitation parameters, the subsequent OPDs are constrained
to the range of 0.01 ≤ γ ≤ 0.5 and 0.01 ≤ Ω ≤ 5. This region exhibits substan-
tial output power for all configurations analyzed under low amplitude excitation
scenarios (γ ≤ 0.5).

Building upon the methodology employed in the previous subsection, Figure 5.26
presents the OPDs for the configurations related to Ωs = 0.25. Subsequently, Figure
5.27 further investigates the performance by focusing on specific constant values of
γ. These values, marked by dashed lines within the OPDs, are identified as G
(γ ≈ 0.03), H (γ ≈ 0.1), and I (γ ≈ 0.35).
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Figure 5.26: OPDs for the configurations with Ωs = 0.25: (a) Config. I, (b) config.
III, (c) config. V, and (d) config. VII. Colorbars represent P̄avg levels, restricted to
a limit value. The peak value on the colorbar arrow signifies the maximum output
power achieved by the harvester. White lines with capital letter labels are discussed
in the text and are represented by the frequency response diagrams in Figure 5.27.

Overall, an overview of the OPDs points out that configuration I offers superior
overall performance compared to the other configurations. This is evident from the
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larger regions of high performance (represented by shades of red) observed in config-
uration I. In the same context, configurations III and V exhibit similar bandwidths,
with configuration III displaying larger areas of high output power. Conversely,
configuration VII exhibits the worst overall performance.
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Figure 5.27: Average output power for different γ values. (a) Config. I, (b) config.
III, (c) config. V and (d) config. VII. Each level of γ is highlighted by a different
color: black for γ ≈ 0.03, orange for γ ≈ 0.1 and red for γ ≈ 0.35. γ values are
represented in Figure 5.24 by the labels I, H and J. Power values are scaled by ×10−3.
Red points labeled with numbers are discussed in the text and are represented by
the phase spaces in Figures 5.28 and 5.29.

Yet, a careful analysis of very low excitation levels (γ ≤ 0.1) is crucial, as many
practical applications exhibit this characteristic. When considering such scenarios,
configurations V and VII demonstrate better performance in terms of maximum
output power, while configurations III and V show superior performance in terms
of bandwidth. Surprisingly, configuration I displays the worst performance for these
excitation levels. In contrast, by increasing the excitation levels, a significant shift
occurs, leading to configuration I exhibiting improved overall performance, while
configuration VII shows the worst performance. Notably, the qualitative difference
in performance remains consistent as γ increases. Figure 5.27 provides additional
visual support for these findings through the frequency diagrams.

To deeply analyze this abrupt change in behavior, specific points in the vicinity
of the maximum output powers within the frequency diagrams are carefully selected
and highlighted in red. These points are labeled from 1 to 8. Figures 5.28 and 5.29
illustrate three phase subspaces (z̄1 × z̄2, z̄1 × ˙̄z1 and z̄2 × ˙̄z2) of each selected point.
Equilibrium points corresponding to each case in the z̄1 × z̄2 phase subspaces are
outlined for spatial reference. By comparing points 1 and 5, 2 and 6, 3 and 7, as well
as 4 and 8 in Figures 5.28 and 5.29, it becomes evident that the performance at very
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Figure 5.28: Phase subspaces z̄1× z̄2, z̄1× ˙̄z1 and z̄2× ˙̄z2 of the steady state response
of the system. Each set of subspaces represents each red point marked and labeled
as 1, 2, 3 and 4 in Figure 5.27. The associated equilibrium positions are displayed
in each z̄1 × z̄2 subspace for spatial reference. Poincaré maps are highlighted in red
or black to indicate the type of dynamical response of the system.
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Figure 5.29: Phase subspaces z̄1× z̄2, z̄1× ˙̄z1 and z̄2× ˙̄z2 of the steady state response
of the system. Each set of subspaces represents each red point marked and labeled
as 5, 6, 7 and 8 in Figure 5.27. The associated equilibrium positions are displayed
in each z̄1 × z̄2 subspace for spatial reference. Poincaré maps are highlighted in red
or black to indicate the type of dynamical response of the system.

low γ is constrained by the potential energy barriers inherent of multistable systems.
In the case of bistable and tetrastable configurations, the system remains trapped
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Figure 5.30: OPDs for the configurations with Ωs = 1: (a) Config. II, (b) config.
IV, (c) config. VI, and (d) config. VIII. Colorbars represent P̄avg levels, restricted to
a limit value. The peak value on the colorbar arrow signifies the maximum output
power achieved by the harvester. White lines with capital letter labels are discussed
in the text and are represented by frequency response diagrams in Figure 5.31.

around a stable equilibrium position. As the system receives additional energy with
increasing γ, it surpasses the potential barriers, leading to greater displacement and
consequently improved performance. In this scenario, while the monostable configu-
ration also experiences an increase in performance, it remains severely limited by the
monostable potential. Additionally, in all subspaces, Poincaré maps are highlighted
indicating the dynamical characteristics of the system, showing that enhanced per-
formance is associated with higher displacement and complex phenomena, as indi-
cating the orbits of periodicity 3T (green orbit), 5T (purple orbit), and chaotic (red
orbit) in Figure 5.29, where T is the excitation period. These observations shed
light on the underlying mechanisms responsible for the observed behavior.

Figures 5.30 and 5.31, related to the configurations associated with Ωs = 1,
exhibit a similar qualitative behavior, whereby the bistable configurations display
poorest maximum output power for very low γ. As γ increases, there is a notable
surge in performance attributed to the high amplitude response of the system, sur-
passing the energy barriers.

Still, a careful analysis of the OPDs in Figure 5.30 reveals that configuration
II demonstrates superior performance, characterized by larger regions of very high
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performance (depicted by shades of red). Nevertheless, for operation at lower fre-
quencies (Ω ≤ 1), configurations IV and VI outperform configuration II, as they
encompass regions of good performance (indicated by shades of blue) while config-
uration II presents negligible performance (indicated by shades of purple). In con-
trast, configuration VIII, associated with monostability, exhibits by far the worst
performance.
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Figure 5.31: Average output power for different γ values. (a) Config. II, (b) config.
IV, (c) config. VI and (d) config. VIII. Each level of γ is highlighted by a different
color: black for γ ≈ 0.03, orange for γ ≈ 0.1 and red for γ ≈ 0.35. γ values are
represented in Figure 5.24 by the labels L, K and J. Power values are scaled by
×10−3.

In general, this subsection demonstrates that for very low excitation levels, con-
figurations VII and VIII, associated with monostability, yield higher output powers.
On the other hand, configurations III, V, and IV exhibit superior bandwidths. For
low to medium excitation levels (0.1 ≤ γ ≤ 0.5), configurations I and II exhibit
better performances, while configurations VII and VIII consistently perform poorly.

5.3.3 Multiple Solution Regions

In Subsection 5.3.2, output power diagrams (OPDs) are presented for all con-
figurations. Across all these diagrams, a distinctive region becomes evident when
examining high-frequency and high-amplitude values. Within these zones, a non-
smooth, irregular distribution of data points, showcasing a wide range of high and
low output powers can be observed. This subsection is devoted to a comprehensive
exploration of this intriguing area, which, from this point forward, will be referred
to as the ’scattered zone’. For that, consider Figure 5.32, where the OPD for Con-
figuration I is selected. Here, a small region highlighted by the black dashed square
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and labeled as "PS" is chosen and, within this region, four very close points with
γ = 0.5 and distinct values of Ω are chosen to be analyzed.
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Figure 5.32: OPD for Config. I. Colorbars represent the average output power levels
for each excitation condition. Colorbars represent P̄avg levels, restricted to a limit
value. The peak value on the colorbar arrow signifies the maximum output power
achieved by the harvester. The black dashed rectangle region labeled as PS contains
all the phase subspaces detailed in Figure 5.22. Numbered white circles mark the
locations of each basin of attraction displayed in Figures 5.34 and 5.35.
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Figure 5.33: Phase subspaces z̄1 × z̄2, z̄1 × ˙̄z1 and z̄2 × ˙̄z2 of the system’s steady
state response. Each set of subspaces represents a case with γ = 0.5 and a distinct
Ω value within the PS zone highlighted in Figure 5.32. The associated equilibria are
displayed in z̄1 × z̄2 subspace for spatial reference. Poincaré maps are displayed in
black dots. The P̄avg manifested in each response is highlighted.

Figure 5.33 depicts the phase subspaces z̄1× z̄2, z̄1× ˙̄z1 and z̄2× ˙̄z2 of the steady-
state response of the chosen points within the black dashed rectangle. For each case,
the average output power, P̄avg, is highlighted, showing that a small perturbation
in excitation parameters can alter significantly the system’s response, influencing
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its performance. In this case, four types of attractors are shown: 2 types of 3T
attractors, a 9T attractor and a quasiperiodic-like attractor, each manifesting a
distinct P̄avg. T, in this case, represents the period of excitation.

Results presented in Figure 5.33 suggest that the scattered zones are regions with
many coexisting solutions. In order to confirm this hypothesis, consider an in-depth
analysis of the basins of attraction of the forced system for the subspace z̄1 × z̄2, as
showcased in Figures 5.34 and 5.35. This analysis categorizes the basins into two
distinct types: those on the left, which exclusively consider attractors based on the
system’s motion characteristics, and those on the right, which also incorporate the
impact of average output power, as previously detailed in Chapter 3.

The left-sided basins employ a methodology based on the type of motion, the
same procedure discussed in Section 3.2.1, to classify different types of dynamical
attractors. These attractors are represented by a range of colors, each denoting
different periodic or aperiodic behaviors. Dark gray corresponds to 1T periodic at-
tractors, yellow to 2T attractors, green to 3T attractors, purple to 5T attractors,
and light blue to multiple periods (MP), comprising all periodic attractors with a
periodicity equal or greater than 6T. Additionally, red signifies chaotic (CH) attrac-
tors, while dark red indicates hyperchaotic (HC) attractors. This classification is
summarized in the colorbars next to the left-sided basins in each row.

Furthermore, the right-sided basins employ a similar classification methodology,
while also taking into consideration different values of P̄avg to classify the attractors.
To account for fluctuations and potential numerical errors associated with the inte-
gration scheme, the classification considers intervals with a margin of approximately
2% around the P̄avg values. In other words, when identifying a value of P̄avg, any
values falling within a range of ±2% of the original value associated with a single pe-
riodic or aperiodic attractor are grouped as a unique motion-power-attractor within
this type of basin. Each plot is constructed with a grid of 1000× 1000 points.

The motion-power attractors, which are based on the interplay of motion and
power, are distinguished by various colors, as depicted in the horizontal bar plot
adjacent to the right-sided basin. Additionally, the display includes information such
as the type of motion, the P̄avg value, and the area (A) occupied by the attractor
within the basin. Moreover, when there is more than one attractor that occupies
less than 1% of the basin area (A < 1%), they are consolidated into a single color
classification labeled as OT×Nattr, where ’OT’ signifies ’other attractors,’ and Nattr

represents the number of attractors combined in this manner. If a specific attractor
motion name replaces ’OT’, it indicates that all consolidated attractors share the
same type of motion.

Figure 5.34a presents the basins of attraction corresponding to point 1, as indi-
cated in Figure 5.32, chosen to represent the scattered zone within the OPD. These
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basins reveal the potential for 39 distinct motion-power attractors to emerge de-
pending on the displacement initial conditions, with 13 of them having a chance
exceeding 1% to arise based on the occupied area. Among these 13 main attractors,
four to five magnitudes of P̄avg are observed. Furthermore, an examination of the
basin morphology reveals that the most predictable responses originate from initial
conditions situated at the corners of the plot. In these areas, the basin shapes are
more consistent, and the values of P̄avg are notably higher. Alternatively, the basin
morphology near the stable equilibrium points is associated with an irregular fractal-
like pattern, which can be associated with unpredictability. These characteristics
can be associated with the existence of the scattered zone in the OPDs, as they were
constructed utilizing a stable point as the initial condition for all its points.

In a similar manner, Figure 5.34b displays a case below the scattered zone,
with still a mid-high Ω but with a lower γ. This region shows 32 motion-power
attractors, with 7 of them occupying more than 1% of the plot area. Although this
still represents a substantial number of attractors, it is fewer in comparison to point
1. The basin morphology, however, shows the opposite of the previous basin. In
this case, the basin shapes near the equilibrium positions exhibit greater consistency,
suggesting a higher degree of predictability, whereas the surroundings of the plot are
characterized by fractal-like patterns, signifying a higher degree of unpredictability.
Additionally, it’s worth noting that in this case, the predictable zones with larger
areas exhibit lower values of P̄avg, while the zones associated with unpredictability
demonstrate higher performance.

Figure 5.34c shows the basin of point 4 located in the OPD. In this case, the
basins show characteristics that, in terms of output power and morphology, closely
resemble those observed in the basin presented in Figure 5.34b. Nevertheless, it
implies that a significant reduction in the number of motion-power attractors can
be achieved by reducing the frequency and amplitude of excitation. This reduction
leads to an expansion of the overall area occupied by each attractor, enhancing the
predictability of those with more consistent areas.

This hypothesis is strengthened by the basins presented in Figure 5.35, which
represents the points 4 and 5 highlighted in Figure 5.32. These basins reveal that
as the excitation frequency is decreased towards values closer to the linear natural
frequency of the structure, a significant reduction in the number of attractors occurs.
In point 5, there is only one attractor, while in point 4, there is virtually one. It’s
worth noting that the term ’virtually one’ is used for point 4 because the basin of
point 4 reveals the presence of hyperchaotic responses, indicating that each point of
the attractor represents a distinct, but very similar response, in qualitative terms.
This is supported by the right-sided basin which shows the classification of distinct
hyperchaotic attractors with very similar P̄avg values and amorphous morphology
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Figure 5.34: Basins of attraction of the forced system for the subspace z̄1 × z̄2: (a)
Point 1, (b) Point 2, and (c) Point 3 (as highlighted in Figure 5.32). The left-
sided basins show the attractors related to the type of motion of the system, with
the colorbar representing each attractor. The right-sided basins also incorporate
the value of P̄avg as a mean of classification, with the bar plot representing all the
distinct motion-power attractors.
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Figure 5.35: Basins of attraction of the forced system for the subspace z̄1 × z̄2:
(a) Point 4 and (b) Point 5 (as highlighted in Figure 5.32). The left-sided basins
show the attractors related to the type of motion of the system, with each color
of the colorbar representing one attractor. The right-sided basins also incorporate
the value of P̄avg as a mean of classification, with the bar plot representing all the
distinct motion-power attractors.

of the basin. In these two instances, it becomes evident that the system’s response
and performance exhibit a remarkable level of predictability in point 4, and is 100%
predictable in point 5.

Therefore, the scattered zone is a region with a high amount of coexisting solu-
tions, which reduces the predictability of the system’s performance. It seems that
a control scheme is needed for the system to effectively operate within this region,
ensuring good performance. Moreover, it is noticeable that the reduction of the
frequency of excitation to a value near the linear natural frequencies can drastically
improve its predictability. As a final point, the findings for Configuration I can be
extrapolated for other configurations, however, further analyses of the remaining
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configurations must be carried out in order to be sure of that.

5.3.4 Performance Comparisons

This Subsection presents a comparison analysis between the compact multistable
energy harvester and the classic bistable energy harvester. In light of the results pre-
sented in the previous Subsections, it is reasonable to determine that configurations
I and II present superior performance in almost all operational conditions, while not
true for very low input mechanical energy. Therefore, the magnetic configuration
represented by the restitution parameters (α1, α2, β1, β2) = (−2,−1, 1, 1) is chosen
in this analysis.

The comparisons are performed using the performance comparison diagrams
(PCD), where the metric is defined as the percentage difference of the average output
power, denoted as ∆P̄avg(%), between the average output power of each harvester
(P̄ (CMEH)

avg and P̄
(CBEH)
avg ), where CMEH refer to the proposed multistable harvester

in this work and CBEH is the classical bistable harvester. Equation 5.25 is used to
calculate the percentage difference, which allows a classification based on three sets:

• ∆P̄avg(%) > 0: CMEH shows better performance;

• ∆P̄avg(%) = 0: CMEH and CBEH shows the same performance;

• ∆P̄avg(%) < 0: CBEH shows better performance.

∆P̄avg(%) =
P̄

(CMEH)
avg − P̄

(CBEH)
avg

P̄
(CBEH)
avg

× 100. (5.25)

On this basis, this estimation is applied to each point of the 1000× 1000 OPD grid
of each harvester, resulting in a performance comparison diagram (PCD).

Multistable 2-DoF vs Classical Bistable

The overall characteristics of the classical bistable energy harvester are analyzed
by considering the same approach employed for the 2-DoF system, building DRD and
OPD by setting the parameters of the second degree of freedom to zero (α2 = β2 =

ζ2 = ρ = Ωs = χ2 = φ2 = κ2 = 0). Results observed in Figure 5.36 show consistent
regions of dynamical attractors at lower excitation frequencies and sparser regions
at higher frequencies, with the 1T, 3T, and CH being the predominant dynamical
attractors in the DRD. Qualitatively, the OPD in Figure 5.36b displays a similar
structure compared to the multistable 2-DoF harvester, showing however, lower
maximum average output power: while the classical bistable harvester displays a
maximum P̄avg = 65.92, the multistable harvester converts up to P̄avg = 117.73 with
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Ωs = 0.25, and P̄avg = 158.82 with Ωs = 1.0, a performance enhancement of 78.6%
and 140.92%, respectively.
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Figure 5.36: (a) DRD and (b) OPD for the classical bistable energy harvester. Colors
in (a) represent dynamical attractors while colors in (b) represent the average output
power of the harvester (P̄avg).

An overall comparison of the performance of the classical bistable energy har-
vester with the multistable 2-DoF energy harvester is established considering eight
configurations related to the value of Ωs: 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0.
The performance comparison diagrams (PCDs) in Figure 5.37 illustrate the analysis,
where red colors indicate regions in which the multistable 2-DoF energy harvester
outperforms the classical bistable energy harvester, and black colors indicate regions
where the classical bistable energy harvester performs better. Besides, the red areas
of the diagram are accounted, represented by Ared.

By increasing the value of Ωs causes the regions where the multistable 2-DoF
energy harvester most outperforms the bistable harvester to shift towards higher
frequencies, as expected given Ωs = ω2/ω1. Moreover, as Ωs increases, the darker
regions representing the narrow frequency ranges where the bistable harvester most
outperforms the multistable also become more prominent in higher frequency ranges,
augmenting the range of frequencies where the classical bistable harvester outper-
forms the multistable one in key regions of interest. This can be observed by exam-
ining the structures enclosed within the white dashed rectangles shown in the PCDs,
which progressively shift towards higher frequencies with increasing Ωs. Addition-
ally, by increasing Ωs, it is observed an increase in the area, Ared, that represents
the better performance of the 2 DoF multistable energy harvester.
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Figure 5.37: Performance comparison between the CMEH and the CBEH: PCD for
(a) Ωs = 0.25, (b) Ωs = 0.5, (c) Ωs = 0.75, (d) Ωs = 1, (e) Ωs = 1.25, (f) Ωs = 1.5,
(g) Ωs = 1.75, (h) Ωs = 2. Colorbars represent ∆P̄avg(%). Regions in red represent
where the CMEH outperforms the CBEH, while black regions show where the CBEH
performs better. White dashed rectangle regions are discussed in the text.
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Having identified the regions in the excitation parameter domain where the pro-
posed harvester outperforms the classical bistable harvester, it is crucial to evaluate
the quality of these regions. To this end, consider the introduction of a normalization
of the output power for each output power diagram (OPD) analyzed with different
values of Ωs = (0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0). Specifically, the normalized
power, P̄normij

, is defined as the ratio of the average output power at each point in
the OPD, denoted by P̄avgij , to the maximum average output power across all points
in that same OPD, denoted by P̄ (max)

avg , where i and j are the indexes of the points
within the diagram:

P̄normij
=

P̄avg

P̄
(max)
avg

. (5.26)

This normalization procedure results in all OPDs being scaled to the range [0, 1],
providing a measure of the quality of each frequency range. Subsequently, the oc-
currence of P̄norm ≥ 0.01 for each case is analyzed, which indicates the instances
where the normalized output power is at least 1% of the output power range while
excluding very low power values. The outcome of the analysis is summarized in Fig-
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(a) Occurrence of P̄norm ≥ 0.01
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Figure 5.38: (a) Occurrence diagram (OCD) for P̄norm ≥ 0.01. (b) identified regions
of interest. The colorbar in (a) represents the occurrence percentage. Labels A, B,
C and D represent each colored region, being A the region of best performance, B
and C the regions of moderate performance, and D the region of poor performance
in the γ × Ω parameter domain.

ure 5.38a, where the occurrence diagram is presented. By analyzing this diagram,
four areas of interest can be delimited, as shown in Figure 5.38b. The green area
denoted by the letter A can be classified as the region with the best performance,
exhibiting a high occurrence of good performance. In contrast, the yellow region
labeled as B represents the region with many fluctuations due to the presence of
intermittent irregular sparse points of high and low performance, caused by the nu-
merous attractors in its basin of attraction. Although region B can present high
performance at higher frequencies of operation, it should be classified as a region of
moderate performance as it needs to be associated with a control scheme to stabilize
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in a suitable attractor. Region C, represented in orange, is similar to region B but
shows lower occurrence in the occurrence diagram of 5.38a. Lastly, the red region
labeled as D is characterized by poor harvester performance and should be avoided
in the design of this type of harvester. Therefore regions A, B and C can be classified
as regions of interest.

By comparing Figures 5.37 and 5.38, it is clear that, in terms of overall aver-
age output power, the multistable 2-DoF energy harvester outperforms the bistable
harvester in almost every region of interest. This improved performance can be
attributed to the multistable harvester’s more efficient use of available free space,
which is achieved by incorporating a second piezoelectric patch.

In contrast, in terms of power density, P̄ den
avg , as defined by Equation 5.22, the

proposed system outperforms the classical bistable energy harvester only in specific
zones of the diagram, as depicted in Figure 5.39. This is further explicit by the mea-
sure of the area in red, Ared. These zones are mainly associated with regions B and
C of moderate performance, as classified in Figure 5.38b, suggesting that these zones
are associated with the high performance of both degrees of freedom. This indicates
that the transmission of energy from the external source to the structure, and from
the structure to the piezoelectric elements is done more efficiently in these regions.
In the black zones, the superior performance of the classical bistable harvester can
be attributed to the insertion of an additional source of damping by introducing the
second degree of freedom. In these regions, this extra degree of freedom acts as an
energy sink that does not transmit the energy efficiently to the transducer element.

Different 2-DoF multistable configurations

This subsection establishes a comparison between two different con-
figurations within the group of cases analyzed in this work (Ωs =

{0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}). Equation 5.25 is used, but instead of com-
paring with the CBEH, now the comparison is done regarding the device with
Ωs = 0.25. Figure 5.40 presents a comparison between the device with Ωs = 0.25

and its counterparts with increasing values of Ωs. Black regions depict where the
multistable 2-DoF harvester with Ωs = 0.25 outperforms its counterparts, while
black regions where it underperforms. It is noteworthy that the increase of Ωs pro-
motes enhanced performance at higher frequencies as depicted by the performance
comparison diagrams (PCDs). As expected, the difference in performance between
the compared harvesters increases in regions where each one performs better.
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Figure 5.39: Performance comparison between the CMEH and the CBEH using
the average output power density P̄ den

avg . PCD for (a) Ωs = 0.25, (b) Ωs = 0.5,
(c) Ωs = 0.75, (d) Ωs = 1.0, (e) Ωs = 1.25, (f) Ωs = 1.5, (g) Ωs = 1.75, (h)
Ωs = 2.0. Colorbars represent ∆P̄ den

avg (%). Regions in red represent where the CMEH
outperforms the CBEH, while black regions show where the CBEH performs better.
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Figure 5.40: Performance comparison between the CMEH P̄avg with Ω = 0.25 and
the CMEH with different Ωs values: (a) Ωs = 0.5, (b) Ωs = 0.75, (c) Ωs = 1.0, (d)
Ωs = 1.25, (e) Ωs = 1.5, (f) Ωs = 1.75, (g) Ωs = 2.0. Colorbars represent ∆P̄avg(%).
Red regions indicate where the CMEH with Ωs = 0.25 outperforms its counterparts,
while black regions show where it underperforms. The PCDs use Equation 5.25
modified with the reference harvester being the one with Ωs = 0.25, instead of the
CBEH.
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Chapter 6

The Multidirectional Hybrid Energy
Harvester

Pendulum structures have been widely used in mechanical energy harvesting sys-
tems, as demonstrated in recent review studies [115, 198]. Additionally, although
numerous enhancements to the classic cantilever harvester design have been devel-
oped to date, the capability for multidirectional energy harvesting remains a chal-
lenge that needs to be properly addressed. This Chapter is dedicated to exploring
the usage of pendulum structures to achieve multidirectional capabilities in classical
energy harvesting systems. A multidirectional hybrid energy harvester (MHEH) is
proposed. Specifically, the MHEH is a modified version of the classical cantilever-
based piezoelectric energy harvester (CPEH), where a pendulum is attached to the
free end of the cantilever design. Moreover, a piezoelectric transducer is attached to
the vertical direction of the harvester to convert energy from axial oscillations, while
an electromagnetic converter is attached to the pendulum to harness the rotational
energy, resulting in a hybrid transduction scheme. The next sections show that the
utilization of the hybrid transduction strategy is necessary to mitigate the effects of
the pendulum as an energy absorber, harnessing the rotational energy that would
otherwise be lost.

6.1 Design and Theoretical Model

Consider the conceptual representation of three cantilever-based energy har-
vesters presented in Figure 6.1. The first shown in Figure 6.1(a), represents the
classical cantilever-based piezoelectric energy harvester (CPEH), composed by a
piezoelectric transducer attached to a structural beam element, a support where the
beam is embedded, and a tip mass at its free end. The second design, displayed
in Figure 6.1(b), shows the multidirectional piezoelectric harvester (MPEH), which
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incorporates the pendulum in the classical design. This layout leverages the planar
motion of the pendulum to transmit the input energy from one Cartesian direction to
another. Finally, Figure 6.1(c) displays the proposed multidirectional hybrid energy
harvester (MHEH), which incorporates an additional electromagnetic transducer at
the support of the pendulum in order to harness its rotational energy.

Electromagnetic
transducer

Pendulum

Mechanical 
excitation

SupportPiezoelectric
transducer

Cantilever 
beam

Tip mass

(a) Classical 
Piezoelectric Harvester

(b) Multidirectional 
Piezoelectric Harvester

(c) Multidirectional Hybrid
Harvester

Figure 6.1: Conceptual representation of the three types of energy harvesters. (a)
The classical piezoelectric energy harvester (CPEH), composed of a piezoelectric
transducer and a cantilever beam structure with a tip mass. (b) the multidirectional
piezoelectric energy harvester (MPEH), composed by the CPEH plus the addition
of a pendulum structure. (c) The proposed multidirectional hybrid energy harvester
(MHEH) composed of the MPEH plus the addition of an electromagnetic transducer
at the pendulum’s support.

6.1.1 Physical Modeling

Given the designs presented in Figure 6.1, they can be represented by the gen-
eral archetype model depicted in Figure 6.2. The model considers the beam main
structure of effective mass ms, and a pendulum-type element of effective mass mp

attached to it. The equivalent stiffness and damping coefficients are represented
by kj (j = x, z, pz) and cj (j = x, z, em, p), in which subscripts are related to the
direction or an element within the system. Subscript x and z refer to the plane
directions, while subscript p refers to the pendulum; subscripts pz and em refer
to the piezoelectric and electromagnetic transducers, respectively. Two transducers
are attached to the system: a piezoelectric element with an electromechanical cou-
pling term, θpz and an equivalent stiffness, kpz, in the z direction of the structure;
and an electromagnetic energy converter attached to the support of the pendulum
with an electromagnetic coupling term, θem, and a magnetic damping coefficient
cem. The transducers are represented by an equivalent circuit. The piezoelectric
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element can be represented by a circuit depicted in Figure 6.2(b), with an in-
ternal capacitance, Cpz, connected in parallel to internal resistance, Ripz, and an
induced current related to the electromechanical coupling, Ipz(t) = θpz żs(t). An
external load resistance, Rlpz, is also attached to the piezoelectric element. Ad-
ditionally, the electromagnetic transducer is represented by the circuit depicted in
Figure 6.2(c), with a voltage source, vem(t) = θemϕ̇(t), connected in series with an
equivalent internal inductance, Lm, an internal resistance Riem, and external load re-
sistance, Rlem. The equivalent resistance of the piezoelectric circuit is represented by
Rpz = RipzRlpz/ (Rlpz +Ripz), while the equivalent resistance of the electromagnetic
circuit is represented by Rem = Riem +Rlem.

The effects of gravity, g, are considered, and the system is subjected to a multi-
directional excitation represented by the vector rb(t) = rb(t) [sin (µ)êx + cos (µ)êz],
where the bold notation refers to vectors and italic notation refers to scalars; µ is the
angle between the external excitation vector rb(t) and the z direction, and rb(t) is
the excitation function; the vectors êx and êz are the base vectors of each Cartesian
direction, x and z, respectively.

The absolute structure position can be written as follows,

rs(t) = [xb(t) + xs(t)] êx + [zb(t) + zs(t)] êz

= [xb(t) + x(t)] êx + [zb(t) + z(t) + zst] êz,
(6.1)

where x(t) and z(t) are the relative positions in which the system oscillates with
respect to the equilibrium position, and zst = (ms +mp) g/ (kz + kpz) is the static
deflection of the structure due to gravity action. Also, the absolute position of the
pendulum is given by

rp(t) = [xb(t) + x(t) + xp(t)] êx + [zb(t) + z(t) + zst + zp(t)] êz

rp(t) = [xb(t) + x(t) + Lp sin (ϕ(t))] êx + [zb(t) + z(t) + zst + Lp cos (ϕ(t))]êz,
(6.2)

where Lp is the pendulum length and ϕ is the pendulum angle.
By considering an energetic approach, the total kinetic energy can be written as

the composition of the structure and the pendulum kinetic energies as follows,

T = Ts + Tp

=
1

2
msṙs(t) · ṙs(t) +

1

2
mpṙp(t) · ṙp(t)

=
1

2
mp

{[
ẋ(t) + ẋb(t) + Lpϕ̇(t) cos (ϕ(t))

]2
+
[
ż(t) + żb(t)− Lpϕ̇(t) sin (ϕ(t))

]2}
+

1

2
ms

{
[ẋ(t) + ẋb(t)]

2 + [ż(t) + żb(t)]
2} .

(6.3)

The structure and piezoelectric element constitutive behaviors are assumed to be
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Figure 6.2: (a) Archetype representing the Hybrid Multidirectional Energy Har-
vester. (b) The equivalent circuit of the piezoelectric transducer attached to a
resistance. (c) The equivalent circuit of the electromagnetic transducer attached to
a resistance.

linear and, therefore, the total restitution forces of the structure and the piezoelectric
elements are defined in Equations 6.4, 6.5, and 6.6,

fx(t) = −kxx(t), (6.4)

fz(t) = −kzz(t), (6.5)

fpz(t) = −kpzz(t), (6.6)

resulting in the total potential energy, written as the sum of the main structure,
piezoelectric element, and pendulum potential energies,

U = Us + Up

= −
∫ xs(t)

0

fx(t) dx−
∫ zs(t)

0

[fz(t) + fpz(t)] dz −
∫ zb(t)+zs(t)

0

msg dz

−
∫ zb(t)+zs(t)+zp(t)

0

mpg dz

=
1

2
kxx(t)

2 +
1

2
(kz + kpz) [z(t) + zst]

2 −msg [zb(t) + z(t) + zst]

−mpg [zb(t) + z(t) + zst + Lp cos (ϕ(t))] .

(6.7)

The electromechanical coupling of the piezoelectric transducer, θpz, is related
to the induced current, Ipz(t). In contrast, the electromechanical coupling of the
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electromagnetic transducer, θem, is related to the induced voltage, vem(t). The elec-
tromechanical coupling, θpz, is determined by the properties of the piezoelectric
material, its geometry and dimensions. In contrast, the electromechanical coupling
due to the electromagnetic converter, θem, can be determined by the geometric char-
acteristics of the coil(s), the properties of the magnet(s) within the converter, the in-
tensity of its magnetic field(s) and how these elements are positioned and distributed
within the transducer. Often, it is possible to determine these two quantities an-
alytically, nevertheless, either finite element analysis or experimental methods are
required for complex structures. Another possibility is that these coupling mecha-
nisms can dynamically change depending on the state of the system. For the sake
of simplicity, this work considers constant coupling coefficients.

From this perspective, consider the linear relation between the flux linkage, ψ(t),
and the voltage, v(t), across the piezoelectric circuit as ψ̇(t) = v(t), and the linear
relation between the charge, q(t), and the current, I(t), flowing in the electromag-
netic circuit as q̇(t) = I(t). Considering that the total energy, W , of the electrical
domain can be represented by the sum of the electric energy of the piezoelectric
element, We, and the magnetic energy of the electromagnetic transducer, Wm, as
described by Equation 6.8, where WC , Wpz, WL and Wem are the electric energy
in the capacitance, the piezoelectric energy, the magnetic energy in the inductance
and the electromagnetic energy, respectively. The details of this formulation can be
seen in PREUMONT [191].

W = We +Wm (6.8)

= WC +Wpz +WL +Wem (6.9)

=
1

2
Cpzψ̇(t)

2 + θpzψ̇(t)z(t) +
1

2
Lemq̇(t)

2 + θemq̇(t)ϕ(t). (6.10)

The system dissipation is expressed from four major sources: viscous dissipation
of the main structure; viscous dissipation related to the pendulum structure; mag-
netic dissipation of the electromagnetic transducer, resulting from the interactions
between the magnet(s) and coil(s); and electrical resistances within the circuits.
These sources can be modeled through dissipation functions [191, 192], as depicted
in Equation 6.11, where Dx and Dz are the dissipation functions associated with the
nonconservative viscous force in x and z directions. Dϕe is the dissipation function
associated with the interaction between the pendulum structure and the surrounding
media, while Dϕi

is the electromechanical dissipation associated with the magnetic
forces within the electromagnetic transducer. Dpz and Dem are the dissipation func-
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tions that account for the resistive elements of the circuits.

D = Dx +Dz +Dϕe +Dϕi
+Dpz +Dem

=
1

2
cxẋ(t)

2 +
1

2
cz ż(t)

2 +
1

2
cpLpϕ̇(t)

2 +
1

2
cemϕ̇(t)

2 +
1

2

ψ̇(t)2

Rpz

+
1

2
Remq̇(t)

2.
(6.11)

On this basis, the Lagrangian can be defined as L = T − U +W , where the
electromechanical system is associated with five generalized coordinates (three me-
chanical and two electrical), Q = [x(t), z(t), ϕ(t), ψ(t), q(t)]. Therefore, by applying
the Euler-Lagrange method, the following equation is achieved,

d

dt

(
∂L

∂Q̇i

)
− ∂L

∂Qi

+
∂D

∂Q̇i

= 0. (6.12)

Suppressing the (t) in the notation of the generalized coordinates, the electrome-
chanical equations of motion can be written as a system of equations related to the
state variables x, z, ϕ, v and I:

(ms +mp) ẍ+ cxẋ+ kxx+mpLp

[
ϕ̈ cos (ϕ)− ϕ̇2 sin (ϕ)

]
= − (ms +mp) ẍb; (6.13)

(ms +mp) z̈ + cz ż + (kz + kpzt) z − θpzv −mpLp

[
ϕ̈ sin (ϕ) + ϕ̇2 cos (ϕ)

]
=

− (ms +mp) z̈b;
(6.14)

mpL
2
pϕ̈+ (cem + cpLp)ϕ̇+mpLp[ẍ cos (ϕ) + (g − z̈) sin (ϕ)]− θemI =

mpLp [z̈b sin (ϕ)− ẍb cos (ϕ)] ;
(6.15)

Cpzv̇ +
v

Rpz

+ θpz ż = 0; (6.16)

Lemİ +RemI + θemϕ̇ = 0. (6.17)

By assuming a harmonic external stimulus:

rb = xbêx + zbêz = Ab sin (ωt) [sin (µ)êx + cos (µ)êz] . (6.18)

Thus,
r̈b = ẍbêx + z̈bêz = −Abω

2 sin (ωt) [sin (µ)êx + cos (µ)êz] . (6.19)

In order to generalize the analysis, a normalization approach is performed by
considering a reference length, L, a reference voltage V , and a reference current I,
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resulting in the following dimensionless electromechanical equations:

(1 + ρ) ¨̄x+ 2ζx ˙̄x+ Ω2
sx̄+ ρℓ

[
¨̄ϕ cos (ϕ̄)− ˙̄ϕ2 sin (ϕ̄)

]
= −(1 + ρ)¨̄xb; (6.20)

(1 + ρ) ¨̄z + 2ζz ˙̄z + z̄ − χpzv̄ − ρℓ
[
¨̄ϕ sin (ϕ̄) + ˙̄ϕ2 cos (ϕ̄)

]
= −(1 + ρ)¨̄zb; (6.21)

¨̄ϕ+ 2ζϕ
˙̄ϕ+ Ω2

ϕ sin (ϕ̄)− χemĪ +
1

ℓ

[
¨̄x cos (ϕ̄)−¨̄z sin (ϕ̄)

]
=

1

ℓ

[
¨̄zb sin (ϕ̄)− ¨̄xb cos (ϕ̄)

]
;

(6.22)

˙̄v +
v̄

φpz

+ κpz ˙̄z = 0; (6.23)

˙̄I + φemĪ + κem
˙̄ϕ = 0. (6.24)

These equations are related to the dimensionless parameters presented in Table 6.1
together with typical values.

Table 6.1: System parameters and values used in the analyses

Parameter Description Symbol Definition Value

Natural frequency of the main structure in x ωx

√
kx/ms -

Natural frequency of the main structure in z ωz

√
kz/ms -

Linearized natural frequency of the pendulum ωϕ

√
g/Lp -

Normalized time τ ωzt -
Normalized x displacement of the main structure x̄(τ) x(t)/L -
Normalized z displacement of the main structure z̄(τ) z(t)/L -
Normalized angle of the pendulum structure ϕ̄(τ) ϕ(t) -
Normalized voltage of the piezoelectric circuit v̄(τ) v(t)/V -
Normalized current of the electromagnetic circuit Ī(τ) I(t)/I -
Normalized base excitation frequency Ω ω/ωz 0.01 → 2
Normalized base excitation amplitude γ Ab/L 0.01 → 0.5
Normalized angle of the base excitation vector rb(t) µ̄ µ 0◦, 45◦, 90◦

Normalized base excitation displacement in the x direction x̄b(τ) γ sin (Ωτ) sin (µ̄) -
Normalized base excitation displacement in the z direction z̄b(τ) γ sin (Ωτ) cos (µ̄) -
Ratio of masses ρ mp/ms 0.5
Normalized damping coefficient of the main structure in x ζx cx/(2ωzms) 0.025
Normalized damping coefficient of the main structure in z ζz cz/(2ωzms) 0.025

Normalized total damping coefficient of the pendulum structure ζϕ
[(cem/Lp)+cp]

2ωzLpms
0.0025

Ratio of natural frequencies of the main structure Ωs ωx/ωz 0.01 → 2
Ratio of natural frequencies of the pendulum and the z direction Ωϕ ωϕ/ωz 0.01 → 2
Normalized pendulum length ℓ Lp/L 1
Normalized piezoelectric coupling in the mechanical ODE χpz θpzV/(kzL) 0.05
Normalized electromagnetic coupling in the mechanical ODE χem θemI/(ρkzL2

p) ηχpz

Normalized piezoelectric coupling in the piezo circuit ODE κpz θpzL/(CpzV ) 0.5
Normalized EM coupling in the electromagnetic circuit ODE κem θem/(LemI) ηκpz

Normalized equivalent resistance of the piezoelectric circuit φpz CpzRpzωz 0.2 → 100
Normalized equivalent resistance of the electromagnetic circuit φem Rem/(Lemωz) 0.01 → 5
Ratio between electromechanical couplings η χem/χpz = κem/κpz 0.2 → 1
Normalized electrical output power of the piezoelectric circuit P̄pz(τ) Ppz(t)/(CpzωzV 2) -
Normalized electrical output power of the electromagnetic circuit P̄em(τ) Pem(t)/(LemωzI

2) -

This model allows the representation of all three harvesters depicted in Fig-
ure 6.1, enabling further comparison among them. The modeling of the CPEH is
achieved by maintaining the pendulum mass, reducing the pendulum length to zero,
and removing the electromagnetic transducer as illustrated in Figure 6.3a, denoted
as Case I. This is equivalent of making the parameters ζϕ = Ωϕ = ℓ = χem = κem =
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φem = 0. Case II, depicted in Figure 6.3b, represents the model for the MPEH. This
configuration can be achieved by removing the electromagnetic transducer, making
χem = κem = φem = 0. Finally, Case III refers to the proposed MHEH, with the
pendulum structure and the electromagnetic converter, being represented in Figure
6.3c.

(a) I: CPEH (b) II: MPEH (c) III: MHEH

Figure 6.3: Equivalent models of (a) Case I: The classical linear piezoelectric energy
harvester (CPEH). (b) Case II: The multidirectional piezoelectric energy harvester
(MPEH). (c) Case III: The multidirectional hybrid energy harvester (MHEH), pro-
posed in this work.

6.1.2 Performance Metrics

The performance of the energy harvesting system is evaluated with the defini-
tion of the electrical power associated with both piezoelectric and electromagnetic
circuits. The total instantaneous electrical power consists of the sum of the instan-
taneous electrical power in each circuit, as represented by Equation 6.25. Thus, the
average electrical power, defined over the interval t0 ≤ t ≤ tf , is represented by
Equation 6.26, where vRMS and IRMS are the root-mean-square (RMS) of the out-
put voltage of the piezoelectric circuit and the output current of the electromagnetic
circuit, respectively, and is defined as depicted in Equation 6.27.

Pinst = Pinstpz + Pinstem =
1

Rpz

v2 +RemI
2, (6.25)

Pavg =
1

tf − t0

∫ tf

t0

Pinst dt =
1

Rpz

(
vRMS

)2
+Rem

(
IRMS

)2
, (6.26)

where the RMS of any quantity can be defined as:

□RMS =

√
1

tf − t0

∫ tf

t0

[□(t)]2 dt. (6.27)

Furthermore, based on these concepts and according to Table 6.1, the normalized
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average electrical output power can be determined as described in Equation 6.28.

P̄avg = P̄pz + P̄em =
1

φpz

(
v̄RMS

)2
+ φem

(
ĪRMS

)2
. (6.28)

6.2 Multidirectional Energy Harvesting

This section evaluates the main characteristics of the energy harvester showing
that the pendulum structure can be used to achieve multidirectionality in mechanical
structures due to its capability to diffuse energy between different directions within
the system. Numerical simulations carried out employing the fourth order Runge-
Kutta scheme, considering a time step ∆τ ∝ 2π/Ω defined after a convergence
analysis. Dynamical observations are treated together with performance.

In order to illustrate the multidirectionality concept, consider the free responses
of the system (γ = Ω = µ̄ = 0), presented in Figures 6.4, 6.5 and 6.6 with the
following structural parameters: Ωs = 1.5 and Ωϕ = 0.05. For clarity, the piezo-
electric and electromagnetic transducers are excluded from the analysis, setting
χpz = κpz = φpz = χem = κem = φem = 0. The remaining parameters are listed in
Table 5.1.

Figure 6.4 demonstrates a scenario in which the structure is perturbed with an
arbitrary initial position in the z̄ direction, while the pendulum and the position
of the structure’s x̄ direction remain stationary at their respective initial condition.
As time progresses, it is observed that the structure oscillates in the z̄ direction,
while the pendulum and the structure’s x̄ direction remain stationary at rest. This

0 126 251
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0

5

x̄

×10−2

(a)

0 126 251
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0

5

z̄

×10−3

(b)

0 126 251

τ

−5

0

5

φ̄

×10−2

(c)

Figure 6.4: Free response of the system as the structure is released from an arbitrary
z̄ initial position. The piezoelectric and electromagnetic transducers are excluded
from the analysis, that is, χpz = κpz = φpz = χem = κem = φem = 0.

behavior is expected since the system is ideal and unperturbed in the other direc-
tions. In contrast, when the x̄ direction is perturbed, energy is transmitted from
the x̄ direction to the pendulum, and from the pendulum to the z̄ direction. This
scenario is depicted in Figure 6.5. Furthermore, Figure 6.6 demonstrates that when
the pendulum is released from an arbitrary ϕ̄ initial angle, the energy is simulta-
neously transferred from the pendulum to both x̄ and z̄ directions. This analysis
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highlights the pendulum as an energy bridge between directions.
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Figure 6.5: Free response of the system as the structure is released from an arbitrary
x̄ initial position. The piezoelectric and electromagnetic transducers are excluded
from the analysis, that is, χpz = κpz = φpz = χem = κem = φem = 0.
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Figure 6.6: Free response of the system as the pendulum is released from an arbitrary
ϕ̄ initial angle. The piezoelectric and electromagnetic transducers are excluded from
the analysis, that is, χpz = κpz = φpz = χem = κem = φem = 0.

Energy harvesting assessment is now in focus. In this phase, the energy har-
vesters illustrated in Figure 6.1 are compared. For that, consider their equivalent
models as established in Figure 6.3. The electromagnetic transducer parameters
utilized are of the following: χem = 0.04, φem = 0.25, κem = 0.4. The remaining
non-zero parameters are utilized as presented in Table 5.1.

The performance of each system is assessed across a range of frequencies by
imposing three different excitation angles for each case, defining different multidi-
rectional energy sources: µ̄ = 0◦, a unidirectional case; µ̄ = 45◦, a multidirectional
case; and µ̄ = 90◦, an opposite case of the unidirectional source. Diagrams P̄avg ×Ω

presented in Figures 6.7, 6.8 and 6.9, are built using x̄ = ˙̄x0 = z̄0 = ˙̄z0 = ϕ̄0 =
˙̄ϕ0 = v̄0 = Ī0 = 0 as initial conditions. An up-sweep test with 500 steps of the
normalized frequency, Ω, is performed. For each step, dΩ, 800 excitation periods,
T, are imposed at each integration, with the last 150 considered to be steady state.
The value of the steady state average output power, P̄avg, is computed for each step.
As Ω increases, the dynamics of the system are maintained, that is, besides for the
first value of Ω, the initial conditions of each point in the diagram correspond to the
end state of the preceding point. Different excitation levels of γ = 0.1, γ = 0.25,
and γ = 0.5 are considered.
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In each Figure, the first column (a) illustrates the performance of Case I: CPEH.
It is observed that when the excitation angle, µ̄, is set to 0◦, the system achieves
maximum performance as the direction of excitation aligns parallel to the êz axis.
However, as the angle µ̄ increases, the maximum power output diminishes gradually
until it reaches zero at µ̄ = 90◦ when the excitation becomes perpendicular to the
êz axis. Consequently, for excitation angles other than µ̄ = 0◦ and µ̄ = 180◦, the
CPEH system experiences a loss of valuable energy from the environment.
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Figure 6.7: P̄avg × Ω diagrams for the Cases I, II, and III represented in Figure
6.3 excited with different angles, µ̄, γ = 0.1. (a) CPEH. (b) Comparison between
the CPEH (dashed black lines) and the MPEH. (c) Comparison between the CPEH
(dashed black lines) and the proposed MHEH. The P̄avg values are scaled by ×10−3.

This issue is addressed by incorporating a pendulum structure that achieves
multidirectionality (referred to as Case II: MPEH) as demonstrated by XU & TANG
[199], as well as PAN et al. [200, 201]. Figures 6.7(b), 6.8(b) and 6.9(b) display the
performance for this kind of harvester. For an excitation angle of µ̄ = 0◦, the
performance of the MPEH is identical to that of the CPEH as there is no resulting
motion from the pendulum. In contrast, for an excitation angle of µ̄ = 90◦ the
advantages of utilizing a pendulum structure to facilitate energy transfer between
directions become evident. In this scenario, the system is capable of effectively
harvesting energy from all directions. However, for intermediate angles between
0◦ < µ̄ < 90◦ it exhibits a drawback, demonstrating lower performance (lower
maximum output power) compared to the CPEH in certain scenarios. This is due
to the pendulum acting as an energy absorber.

In order to deal with this matter, an electromagnetic transducer has been inte-
grated into the system to harness the rotational energy, enabling a portion of the
mechanical energy absorbed by the pendulum to be converted into electrical energy.
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Figure 6.8: P̄avg × Ω diagrams for the Cases I, II, and III represented in Figure
6.3 excited with different angles, µ̄, γ = 0.25. (a) CPEH. (b) Comparison between
the CPEH (dashed black lines) and the MPEH. (c) Comparison between the CPEH
(dashed black lines) and the proposed MHEH. The P̄avg values are scaled by ×10−3.
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Figure 6.9: P̄avg × Ω diagrams for the Cases I, II, and III represented in Figure
6.3 excited with different angles, µ̄, γ = 0.5. (a) CPEH. (b) Comparison between
the CPEH (dashed black lines) and the MPEH. (c) Comparison between the CPEH
(dashed black lines) and the proposed MHEH. The P̄avg values are scaled by ×10−3.

On this basis, a hybrid system is of concern, represented by Case III: MHEH. The
performance of this harvester is presented in Figures 6.7(c), 6.8(c) and 6.9(c). Sim-
ilar to the previous case, for an angle of µ̄ = 0◦, the performance of the MHEH is
equivalent to the CPEH as there is no resulting motion of the pendulum. However,
for angles of µ̄ = 45◦ and µ̄ = 90◦, there is an impressive increase of performance in
both maximum output power and bandwidth when compared to the CPEH.

107



These results clearly show that the MHEH (Multidirectional Hybrid Energy Har-
vester) not only retains the desirable characteristics of the MPEH (Multidirectional
Piezoelectric Energy Harvester) but can also effectively address its limitations. This
highlights the importance of incorporating the additional strategy to harness the
rotational energy when utilizing pendulum structures for efficient multidirectional
piezoelectric energy harvesting applications.

6.3 MHEH Key Characteristics

The next sections are focused on exploring the performance characteristics of
the MHEH by parametrically varying some parameters. Thus, it is important to
contextualize the meaning of these key parameters and how they can influence the
dynamical behavior and harvester performance.

6.3.1 Electrical Parameters

First, the electromechanical couplings of the electromagnetic transducer, χem

and κem, are important to be addressed. As discussed in Section 6.1.1, the value of
these couplings is influenced by many construction characteristics of the transducer,
especially the disposal of coils and internal magnet properties. In order to perform a
general qualitative analysis of the MHEH, a variable is defined containing informa-
tion of the electromagnetic transducer, based on the piezoelectric transducer. On
this basis, consider the ratio between electromechanical couplings as

η =
χem

χpz

=
κem
κpz

. (6.29)

Note that if η = 1, both transducers have the same coupling, while if η < 1,
electromagnetic couplings have a lower value than the corresponding piezoelectric
coupling. Alternatively, if η > 1, the electromagnetic couplings have a larger value
than the corresponding piezoelectric couplings.

Additionally, φpz and φem represent the normalized resistance of the circuit,
meaning that there is an optimal value to be used in order to maximize the output
power of the harvester.

6.3.2 Mechanical Parameters

Mechanical available ambient energy constitutes input parameters, γ - the nor-
malized magnitude of excitation and Ω - the normalized excitation frequency. Note
that Ω = 1 means that the excitation frequency matches the beam’s natural fre-
quency in the z-direction. On the other hand, Ωs is the ratio between the natural
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frequency of the beam’s x-direction and z-direction; Ωϕ is the ratio between the
linearized natural frequency of the pendulum and the beam’s natural frequency in
z-direction. Note that Ωs = 1 means that the natural frequencies of the beam
structure are the same in x and z directions; Ωs > 1 means that the x-direction is
stiffer than the z-direction. This characteristic is illustrated in Figure 6.10, where
a simplified frontal view of the MHEH beam structure is depicted. Furthermore,
Figure 6.11 represents the meaning of Ωϕ parameter, which is closely related to the
pendulum’s length, Lp. A higher value of Ωϕ means a shorter pendulum length.

(b) Ωs = 1(a) Ωs < 1 (c) Ωs > 1 (d)

Ω
s 

kx [Nm
−1]

Figure 6.10: Illustrative representation of the natural frequencies ratio, Ωs. (a)
Ωs < 1 indicates lower stiffness in the x direction, shown by a narrower beam width.
(b) Ωs = 1 represents equal stiffness in both x and z directions, with identical width
and height. (c) Ωs > 1 demonstrates higher stiffness in x direction, depicted by a
wider beam width. (d) Changes in Ωs as the stiffness in x direction, kx, increases.

(b) Ω𝜙 (a) Ω𝜙 (c) 

Lp [m ]

Ω
𝜙 

Figure 6.11: Illustrative representation of the ratio of natural frequencies of the
pendulum and the z direction, Ωϕ. (a) Representation of a higher Ωϕ, corresponding
to a shorter pendulum length. (b) Representation of a lower Ωϕ, indicating a wider
pendulum length. (d) Change in Ωϕ as the pendulum length, Lp, increases.

6.4 Electrical Parameters and Performance

This section develops a characterization of the system’s performance by evalu-
ating the influence of different electrical parameters. Subsection 6.4.1 evaluates the
influence of the electrical resistance parameters on the transducer output powers.
On the other hand, the second subsection evaluates the effects of parameter η in the
average output power of the MHEH. The analyses are carried out by considering
three different configurations with different ratios of natural frequencies, Ωs: 0.5, 1.0
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and 1.5, and a fixed value of Ωϕ = 0.05. The angle of excitation is also maintained
constant at µ̄ = 45◦ and the values of the remaining parameters are summarized in
Table 5.1.

6.4.1 Influence of the Electrical Resistances, φpz and φem

The influence of the electrical resistance parameters is now of concern, estab-
lishing their effects on the average output power of the system. By considering a
constant value of η = 1 and γ = 0.1, Average Output Power Diagrams (OPDs) are
constructed to analyze the influence of the normalized electrical resistance parame-
ters, φpz, and φem, and the excitation frequency, Ω, in the output power of the sys-
tem. These diagrams are built with a grid of 500×500 sample points, each of which is
obtained from a time series integration. As in the previous diagrams, for each sample
point, 800 excitation periods, T, are imposed at each integration, with the last 150
considered to be steady state. Then, the value of the output power is computed based
on the instantaneous output power of the steady state part. Additionally, all sample
points have the same initial conditions of x̄ = ˙̄x0 = z̄0 = ˙̄z0 = ϕ̄0 =

˙̄ϕ0 = v̄0 = Ī0 = 0

to standardize the analysis.
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Figure 6.12: OPDs for the normalized electrical resistance analysis, using γ = 0.1
and µ̄ = 45◦. Three groups are defined with: (a) Ωs = 0.5, (b) Ωs = 1, and (c)
Ωs = 1.5. The first row shows the performance for distinct conductance values in
the piezoelectric circuit (1/φpz). The second row shows the performance for different
resistance values in the electromagnetic circuit (φem). Colorbars indicate the average
output power level, P̄avg, achieved in each case. P̄avg values are scaled by ×10−3.

Figure 6.12 shows these diagrams considering three configurations with different
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values of Ωs. Each column of Figure 6.12 is related to one different configuration:
Figure 6.12(a) for Ωs = 0.5, that is, the z̄ direction is stiffer than the x̄ direction;
Figure 6.12(b) for Ωs = 1.0, where both stiffness of each direction are equal; and
Figure 6.12(c) for Ω = 1.5, showing a configuration with a stiffer x̄ direction than the
z̄ direction. The first row of each configuration shows the OPD for the values of the
normalized conductance of the piezoelectric circuit, 1/φpz. For all configurations,
the optimal value of the normalized conductance is shown to be around 1/φpz = 1.
Additionally, the second row of each configuration shows the OPD for the values
of the normalized resistance of the electromagnetic circuit, φem. As in the previous
case, the three configurations show similar regions of optimal resistance around
φem = 0.25.

In this case, it should be pointed out that the increase of Ωs produces an increase
in the maximum output power of both piezoelectric and electromagnetic transducers.
Additionally, the presence of two peaks of output power in the first and third cases,
as pointed out by the white arrows, occurs due to the shift of the resonance regions
caused by the change of Ωs.

6.4.2 Influence of the Ratio Between Electromechanical Cou-

plings, η

The ratio between electromechanical couplings, η, is now of concern addressing
the evaluation of its effects on the average output powers of the MHEH. Three
values of η are selected: 0.2, 0.5 and 0.8. For each value of η, the same three
configurations with different Ωs values are evaluated, as discussed in the previous
subsection. Results are summarized in P̄avg ×Ω diagrams displayed in Figures 6.13,
6.14, and 6.15, which are divided into three sections based on different values of
normalized excitation amplitude of γ = 0.1, γ = 0.25, and γ = 0.5. In these Figures,
dashed lines represent the P̄avg for the CPEH, serving as a reference for comparison.
Additionally, these diagrams include red curves that represent the average output
power associated with the piezoelectric element, P̄pz, orange curves that represent
the average output power of the electromagnetic transducer, P̄em, and purple curves
that represent the total average output power of the MHEH, P̄avg. Note that all
values of power are scaled by ×103 for better representation.

Figure 6.13 represents the case with η = 0.2. Figure 6.13(a) illustrates that, given
this particular value of η and low excitation amplitudes (γ = 0.1), the MHEH does
not enhance energy conversion to a degree that justifies its use over the CPEH. This
observation holds true for γ = 0.25 and γ = 0.5, as displayed in Figures 6.13(b) and
6.13(c). However, under these conditions, the piezoelectric output power, denoted
as P̄pz, exhibits a significant increase.
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Figure 6.13: Ω × P̄ diagrams for η = 0.2. Three excitation amplitudes are chosen:
(a) γ = 0.1, (b) γ = 0.25, and (c) γ = 0.5. For each γ, three configurations are
selected with (i) Ωs = 0.5, (ii) Ωs = 1 and (iii) Ωs = 1.5. Dashed lines represent
CPEH P̄avg. Red curves represent P̄pz, orange curves represent P̄em, and purple
curves represent P̄avg, all for the MHEH. Power values are scaled by ×10−3.
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Figure 6.14: Ω × P̄ diagrams for η = 0.5. Three excitation amplitudes are chosen:
(a) γ = 0.1, (b) γ = 0.25, and (c) γ = 0.5. For each γ, three configurations are
selected with (i) Ωs = 0.5, (ii) Ωs = 1 and (iii) Ωs = 1.5. Dashed lines represent
CPEH P̄avg. Red curves represent P̄pz, orange curves represent P̄em, and purple
curves represent P̄avg, all for the MHEH. Power values are scaled by ×10−3.
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Figure 6.15: Ω × P̄ diagrams for η = 0.8. Three excitation amplitudes are chosen:
(a) γ = 0.1, (b) γ = 0.25, and (c) γ = 0.5. For each γ, three configurations are
selected with (i) Ωs = 0.5, (ii) Ωs = 1 and (iii) Ωs = 1.5. Dashed lines represent
CPEH P̄avg. Red curves represent P̄pz, orange curves represent P̄em, and purple
curves represent P̄avg, all for the MHEH. Power values are scaled by ×10−3.
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Additionally, Figure 6.14 shows the results for a scenario with η = 0.5. For
low excitation amplitude values (γ = 0.1), the CPEH is still advantageous for
Ωs = 0.5. Alternatively, for the cases with Ωs = 1.0 and Ωs = 1.5, the perfor-
mance became comparable or even better than the CPEH. For medium values of
excitation amplitude (γ = 0.25), as displayed in Figure 6.14(b), this value of η is
suitable for replacing the CPEH as both piezoelectric and electromagnetic transduc-
ers contribute effectively for the energy conversion. For greater values of excitation
amplitude (γ = 0.5), as displayed in Figure 6.14(c), only the piezoelectric transducer
contributes effectively to the energy conversion.

Furthermore, Figure 6.15 illustrates the case where the value of η is increased
to 0.8. In this case, nearly all combinations of Ωs and γ demonstrate the benefits
of employing the MHEH. This is because, in every scenario, the output powers are
comparable to or exceed those presented by the CPEH. Consequently, it follows that
the optimal ratio of electromechanical couplings is around η = 0.8, given this set
of parameters, where both piezoelectric and electromagnetic transducers contribute
effectively to the energy conversion. For higher values of η, the electromagnetic
transducer should convert much more than the piezoelectric element.

Finally, by observing the values of output power presented in Figures 6.13, 6.14,
and 6.15, as well as in Figure 6.12 of the previous section, it is revealed that the
increase of Ωs tends to increase the bandwidth.

6.5 Dynamics and Performance

This section presents a parametric analysis considering four key parameters: the
ratio between natural frequencies of the main structure, Ωs; the ratio between natu-
ral frequencies of the pendulum and the structure’s z-direction, Ωϕ; the normalized
excitation amplitude, γ; and the normalized excitation frequency, Ω. The main ob-
jective of the analysis is to identify the best and the worst combinations of Ωs and
Ωϕ parameters in terms of overall performance by considering a wide range of exci-
tation parameters, γ and Ω. Besides, the angle of base excitation, µ̄, is maintained
at 45◦ in order to subject the system to a symmetric multidirectional excitation of
which the magnitude components of each direction, z and x, are equal. The electri-
cal parameters are based on the values established in the previous sections (η = 0.8,
φem = 0.25, 1/φpz = 1) and the remaining constant parameter values are listed in
Table 5.1.

The parametric analysis is based on the nonlinear dynamics perspective frame-
work employing five types of diagrams: the Dynamical Responses Diagrams (DRDs),
the Lyapunov Exponents Diagrams (LEDs), the Average Output Power Diagrams
(OPDs), the Occurrence Diagrams (OCDs), and the Dynamical Pattern Diagrams
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(DPDs). Each diagram shows an important characteristic of the MHEH in a two-
dimensional parameter space of choice in order to characterize the system’s dynamics
and performance with robustness. Different excitation parameters are of concern.

Each point in the diagrams is related to a time series from the integration of
the governing equations from an initial time, τ0, to a final time, τf , considering a
suitable integration time step, ∆τ = 2π/(ΩNdiv), with Ndiv = 6000 determined by a
convergence analysis. A specific point in time, τtrans = 0.8125τf , is chosen to define
the beginning of a steady-state response. All sample points have the same initial
condition of x̄ = ˙̄x = z̄ = ˙̄z = ϕ̄ = ˙̄ϕ = v̄ = Ī = 0 to standardize the analyses.

6.5.1 Dynamical Responses

This subsection presents a discussion about the distinct dynamical responses of
the MHEH. Diagrams are built assuming constant values of excitation parameters
γ and Ω, employing a grid of 500× 500 sample points within the Ωs×Ωϕ parameter
space, each from 0.01 to 2.

Figure 6.16 shows the DRD, LEDs and OPDs for excitation parameters γ = 0.1

and Ω = 1.2. Figure 6.16a displays the DRD, where different steady-state dynam-
ical behaviors are classified for each time series sample following the color code
established in previous sections of this text. Notably, for this specific system, af-
ter an intensive session of testing and examination of the phase subspaces, it was
observed that the MP classification also includes quasi-periodic responses success-
fully, although the algorithm does not always guarantee this behavior as discussed
in Appendix B.

LEDs are presented in Figures 6.16c and 6.16d, being complementary diagrams
to the DRD that showing the delimitation of periodic, chaotic and hyperchaotic
regions. Moreover, Figures 6.16b, 6.16d and 6.16f show the OPDs for the overall
average output power, P̄avg, the average output power of the piezoelectric transducer,
P̄pz, and the average output power of the electromagnetic transducer, P̄em. All these
quantities are computed considering the steady-state responses (τ > τtrans) of each
time series sample, being essential to define system performance.

It should be pointed out that the attractors present a predominance of 1T pe-
riodic responses, followed by hyperchaotic responses in the bottom right part of
the diagrams. The analysis of these diagrams together indicates that more com-
plex regions, associated with many types of dynamical responses, produce better
performance, especially the central part of the hyperchaotic zone. Also, this case
shows the output power predominance of the electromagnetic transducer, showing
a maximum value of 7.5 times greater than the piezoelectric element.

Eight points, labeled from 1 to 8, are marked on the diagrams to illustrate
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Figure 6.16: Diagrams for the Ωs × Ωϕ parameter space, considering excitation
parameters of γ = 0.1 and Ω = 1.2: (a) DRD with the classification of distinct
attractor types, color-coded according to text description. (b) OPD for the overall
average output power, P̄avg. (c) LED for largest exponent, λ1. (d) OPD for the
piezoelectric transducer output power, P̄pz. (e) LED for the second largest exponent,
λ2. (f) OPD for the electromagnetic transducer output power, P̄em. OPD colorbars
represent output power values; LEDs colorbars indicate exponent value (rainbow for
positive, grayscale for negative). Diagrams are built with a grid of 500× 500 points.
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Figure 6.17: Corresponding phase subspaces and Poincaré maps of the steady-state
response of points 1 to 8, as referenced in Figure 6.16 and detailed in Table 6.2.
Each color represents distinct dynamical responses. (a) dark gray: 1T, (b) yellow:
2T, (c) light green: 3T, (d) orange: 4T, (e) purple: 5T, (d) light blue: MP - in this
case, quasi-periodic, (g) red: chaotic - CH, and (h) dark red: hyperchaotic - HC.
Poincaré maps are displayed by black dots, except for red in (a) and yellow in (h).
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each dynamical response classified within the DRD. These points are meticulously
documented in Table 6.2 for reproducibility. Figure 6.17 showcases the distinct dy-
namical responses corresponding to each point. Each example is depicted through
four steady state phase subspaces: x̄ × ˙̄x, representing the x-direction, z̄ × ˙̄z, rep-
resenting the z-direction, ϕ̄ × ˙̄ϕ, representing the pendulum motion. Notably, the
ϕ-direction is constrained to the range of the remainder of the actual value of ϕ̄
divided by 2π. This treatment aligns with the topological view of the pendulum’s
phase subspace as a cylinder, where π and −π represent the same position (upward
vertical position) [171, 202]. Finally, v̄ × Ī represents the electrical coordinate do-
main. It is noticeable that the first seven points, from Figures 6.17a to 6.17g, show
dynamical behaviors where the pendulum does not rotate, but oscillates between a
maximum and a minimum position. A variety of responses are observable with this
characteristic, remarkably the quasi-periodic behavior showed in Figure 6.17f and
the chaotic response in Figure 6.17g where the system exhibits a complex aperiodic
pattern of motion. Alternatively, the example presented in Figure 6.17h shows a
hyperchaotic complex response where the pendulum shows an irregular pattern, in-
cluding rotation. This result indicates that the MHEH exhibits better performance
when the pendulum has some kind of high-amplitude motion.

Table 6.2: Exact corresponding values of Ωs and Ωϕ marked in the diagrams of Fig.
6.16 used to exemplify the different dynamical responses in Fig. 6.17.

Point Classification Ωs Ωϕ

1 1T 1.589238476953908 1.692925851703407
2 2T 0.943186372745491 0.771703406813627
3 3T 1.429719438877756 0.424749498997996
4 4T 1.150561122244489 0.333026052104208
5 5T 0.947174348697395 0.237314629258517
6 MP 1.80060120240481 0.632124248496994
7 CH 0.416773547094188 0.404809619238477
8 HC 1.18246492985972 0.540400801603206

6.5.2 Global Dynamics

In order to determine the best and worst combinations of Ωs and Ωϕ across
various excitation scenarios, the analysis presented in Figure 6.16 is conducted across
100 scenarios, each distinguished by different excitation values. Initially, five specific
values of γ ranging from γ = 0.1 to γ = 0.5 are selected, with an interval of ∆γ = 0.1

between each value. Subsequently, for each value of γ, 20 distinct values of parameter
Ω are examined, ranging from Ω = 0.1 to Ω = 2, with an interval of ∆Ω = 0.1. This
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extensive range allows the evaluation of the system performance under a broader
spectrum of conditions. A subset of these scenarios, specifically forty (40), are
depicted in Figures 6.18, 6.19, 6.20, and 6.21.
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Figure 6.18: DRDs for a fixed value of excitation amplitude of γ = 0.1, showing
different values excitation frequency, from (a) Ω = 0.1 to (t) Ω = 2, with an interval
of ∆Ω = 0.1. Different colors represent distinct dynamical behaviors summarized in
the accompanying colorbar. Each diagram is built with 500× 500 sample points.
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Figure 6.19: P̄avg OPDs for a fixed value of excitation amplitude of γ = 0.1, showing
different values excitation frequency, from (a) Ω = 0.1 to (t) Ω = 2, with an interval
of ∆Ω = 0.1. Accompanying rainbow colorbars show the range of values of P̄avg for
each scenario. Each diagram is built with 500× 500 sample points.
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Figure 6.18 showcases 20 unique instances of Ωs×Ωϕ DRDs, achieved by varying
Ω while maintaining a fixed the value of γ = 0.1. It is observed that lower Ω

values, represented in the first row of Figure 6.18 (Figures 6.18a to 6.18d - ranging
from Ω = 0.1 to Ω = 0.4), lead to a simpler system behavior when altering Ωs

and Ωϕ, primarily exhibiting 1T dynamical responses. As the excitation frequency
increases from Ω = 0.5 to Ω = 1.2, the complexity intensifies, especially near the
z-direction resonance (around the vicinity of Ω = 1). However, a further increase in
the excitation frequency from Ω = 1.3 to Ω = 2 results in a reduction in complexity.

Figure 6.19 presents the corresponding OPDs for the DRDs depicted in Figure
6.18. Several observations can be made by comparing these two Figures. Firstly,
an increase in complexity is indicative of improved performance according to these
results. Secondly, near z-direction resonance (0.8 ≤ Ω ≤ 1.0), the regions of good
performance expand within the OPDs, as expected. Thirdly, 1T, 2T, and HC re-
sponses are the most prevalent dynamical behaviors observed, followed by CH and
MP responses. Upon examination of these results, it is noted that the majority of
hyperchaotic regions show superior performance, while the majority of 1T regions
(though not all) exhibit poor performance. For instance, the top-right regions of
Figures 6.19i to 6.19l (from Ω = 0.9 to Ω = 1.2) show an arc-shaped strip with ele-
vated output power values. In fact, this strip seems to move from the bottom region
(Figure 6.19a) to the top right region of the diagrams, while other more complex
regions emerge at the bottom as Ω increases. Fourthly, the peak power moves from
smaller to larger Ωs values as Ω increases, as expected, due to the change in the
beam’s resonance frequency region. In this regard, the peak output power region of
the OPDs from Ω = 0.1 to Ω = 0.8 (Figures 6.19a to 6.19h) are well-defined regular
1T attractors. Alternatively, from Ω = 0.9 to Ω = 2 (Figures 6.19i to 6.19t), the
regions that display the best performances are hyperchaotic ones. Finally, as the
resonance shifts from a lower to a higher Ωs value, an increase in maximum average
output power, P̄ (max)

avg , is observed in almost all cases.
Several of the previously discussed observations hold for scenarios with a higher

excitation amplitude of γ = 0.3, as presented in Figures 6.20 and 6.21. Nevertheless,
some new behaviors also emerge. In this case, due to the larger excitation magnitude,
some of the described phenomena start to appear at lower Ω values compared to
the previous case. In the scenario with low Ω values from Ω = 0.1 to Ω = 0.3, the
peak power regions are characterized by 1T regular attractors. For Ω = 0.3 and
Ω = 0.4, 2T and CH attractors also appear in the peak output power zone. These
attractors form a strip, similar to the one in the previous case, that moves towards
the top right region of the diagram. As Ω increases from Ω = 0.4 to Ω = 2, the
complexity increases, and new regions with distinct dynamical responses emerge.
From the scenario with Ω = 0.4 to Ω = 0.8 (from Subfigures 6.21d to 6.21h), high-

122



0

2

Ω
φ

(a) Ω = 0.1 (b) Ω = 0.2 (c) Ω = 0.3 (d) Ω = 0.4

0

2

Ω
φ

(e) Ω = 0.5 (f) Ω = 0.6 (g) Ω = 0.7 (h) Ω = 0.8

0

2

Ω
φ

(i) Ω = 0.9 (j) Ω = 1.0 (k) Ω = 1.1 (l) Ω = 1.2

0

2

Ω
φ

(m) Ω = 1.3 (n) Ω = 1.4 (o) Ω = 1.5 (p) Ω = 1.6

0 2Ωs
0

2

Ω
φ

(q) Ω = 1.7

0 2Ωs

(r) Ω = 1.8

0 2Ωs

(s) Ω = 1.9

0 2Ωs

(t) Ω = 2.0

1T

2T

3T

4T

5T

MP

CH

HC

Figure 6.20: DRDs for a fixed value of excitation amplitude of γ = 0.3, showing
different values excitation frequency, from (a) Ω = 0.1 to (t) Ω = 2, with an interval
of ∆Ω = 0.1. Different colors represent distinct dynamical behaviors summarized in
the accompanying colorbar. Each diagram is built with 500× 500 sample points.
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Figure 6.21: P̄avg OPDs for a fixed value of excitation amplitude of γ = 0.3, showing
different values excitation frequency, from (a) Ω = 0.1 to (t) Ω = 2, with an interval
of ∆Ω = 0.1. Accompanying rainbow colorbars show the range of values of P̄avg for
each scenario. Each diagram is built with 500× 500 sample points.
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performance regions (red regions) exhibit a greater number of distinct attractors,
but with the 1T attractor being predominant. From Ω = 0.9 to Ω = 2 (from Figures
6.21i to 6.21t), the majority of attractors appearing in high-performance zones (red
regions) are aperiodic ones (CH and HC). As before, the increase in Ω shifts the
peak output power region to higher Ωs values due to the change in the system’s
resonance characteristics. Also, the increase in γ results in an overall increase in the
maximum output power displayed across all scenarios.

6.5.3 The Best Key Structural Parameters

The previous analysis, represented by Figures 6.18, 6.19, 6.20 and 6.21, provide
numerous valuable insights concerning energy harvesting, being useful for design
decision making through the determination of the combinations of Ωs and Ωϕ that
yields the best performances. Nevertheless, the analysis and design is a complex task
that requires more sophisticated tools. An interesting tool for that is the Occurrence
Diagram (OCD) which is a two-dimensional parameter diagram that monitors how
many times a certain characteristic occurs in a certain region of the parameter space.
A comprehensive explanation of the method used to build the OCDs is provided in
Chapter 3. By employing this approach, it is possible to effectively identify regions
within the Ωs ×Ωϕ parameter space where higher and lower performances are more
likely to occur.

In the process of analyzing 100 distinct scenarios, each with its unique set of
OPDs (one for the P̄pz, one for P̄em and one for P̄avg), it is crucial to normalize the
power ranges prior to constructing the OCDs. This normalization ensures that the
values representing the lowest and highest performances of each OPD are scaled to
0 and 1, respectively. This step is necessary as each OPD possesses its own unique
minimum and maximum values of average output power, and constructing the OCDs
without this normalization could lead to biased results.

The normalization is carried out for three sets of 100 OPDs: one set regarding the
average output power of the piezoelectric transducer, P̄pz, one related to the average
output power of the electromagnetic transducer, P̄em, and the last concerning the
overall average output power of the MHEH, P̄avg. For each point within an OPD, a
normalized output power is defined, P̄norm, defined from the average output power,
P̄ , associated with a specific point within the OPD, defined by indexes i and j;
and the maximum average output power occurring within the current OPD, P̄ (max).
This is represented as follows

P̄normij
=

P̄ij

P̄ (max)
, (i = 1, · · · , 500); (j = 1, · · · , 500) (6.30)

For the current analysis, it has been established that the OCDs should monitor
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instances where P̄norm ≥ 0.3. In other words, any sample within the OPD that
exhibits an output power value exceeding 30% of the maximum output power of the
current OPD is recorded by the occurrence diagram. This threshold is selected as it
effectively identifies regions demonstrating good to excellent performance in terms
of output power and bandwidth.
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Figure 6.22: Occurrence Diagrams (OCDs) of the Ωs × Ωϕ parameter space for a
threshold of (a) P̄ (pz)

norm ≥ 0.3, (b) P̄ (em)
norm ≥ 0.3, and (c) P̄ (overall)

norm ≥ 0.3. The accompa-
nying colorbar in each OCD represents the likelihood of the corresponding threshold
to occur. Black circles labeled with numbers from 1 to 11 represent combined Ωs

and Ωϕ values of interest.

The resulting OCDs are displayed in Figure 6.22. Figure 6.22c makes evident
that the optimal overall combinations of Ωs and Ωϕ are situated in the bottom right
region of the diagrams, while the least favorable combination is located in the top
left. Specifically, approximately 60% to 68% of the cases with performance exceeding
a threshold of 30% (P̄

(overall)
norm ≥ 0.3) occur at higher Ωs values and lower Ωϕ values.

Conversely, about 2% to 5% of the cases with similar performance levels occur at
lower Ωs values and higher Ωϕ values. Moreover, medium occurrence values are
displayed at lower to mid-range Ωϕ values, spanning all Ωs values. Additionally, the
OCD for the P (em)

norm, associated with the electromagnetic transducer, exhibits sim-
ilar qualitative behavior, as depicted in Figure 6.22b. Alternatively, Figure 6.22a
presents the OCD for the P (pz)

norm, associated with the piezoelectric transducer. Al-
though the region of high occurrence of good performance still appears in the bottom
right region of the OCD, it covers a larger area within the diagram. Also, the re-
gions of medium occurrence values are dispersed around the high occurrence region,
occupying a range of approximately 0.7 ≤ Ωs ≤ 1.3 and 0.01 ≤ Ωϕ ≤ 1.8.

In summary, this discussion reveals that an MHEH with a stiffer x direction, kx,
and a longer pendulum length, Lp, outperforms an MHEH with opposite configu-
rations. To corroborate this point, 11 configurations are selected within the OCDs,
each possessing unique structural characteristics (distinct Ωs and Ωϕ values). The
location of these configurations within the OCD is marked as black circles labeled
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Table 6.3: Exact corresponding values of Ωs and Ωϕ marked in the OCDs of Figure
6.22 used to determine the configurations analyzed in Figures 6.23, 6.24, 6.25. Re-
gion colors are associated with the occurrence percentage as displayed in the OCDs.

Configuration Ωs Ωϕ Region Color in the OCD

P̄
(pz)
norm P̄

(em)
norm P̄

(overall)
norm

1 1.87 0.20
2 1.55 0.59
3 0.95 0.20
4 0.15 0.20
5 1.87 0.91
6 1.37 1.28
7 0.95 0.92
8 0.15 0.98
9 1.81 1.80
10 1.01 1.75
11 0.15 1.75

from 1 to 11, as displayed in Figure 6.22, and listed in Table 6.3 for reproducibility.
For each configuration, a new set of DRDs and OPDs are constructed within the
γ × Ω parameter space to assess performance under a broad range of external exci-
tation conditions, where the values of γ are varied from 0.01 to 0.5, and the values
of Ω are varied from 0.01 to 2, both contained in a grid of 1000 × 1000 points. In
this regard, many aspects of this analysis are visual representations of a qualitative
characteristic, with different colors or gradients representing different characteris-
tics. Consequently, in this analysis, any output power value classified from blue to
red is considered part of the harvester’s operational bandwidth, while purple values
are considered poor performance.

Figure 6.23 showcases the result for Configurations 1, 2, 3, and 5. These config-
urations reside in the region of medium to high occurrences of P̄norm ≥ 0.3 in the
OCDs, spanning from green to red-colored regions. Each case displays the DRD,
the OPD, and the percentage contribution of each transducer to the average output
power of the OPD. Here, EM (light red bar) represents the electromagnetic trans-
ducer, and PZ (orange bar) represents the piezoelectric transducer. Overall, this
first set of configurations exhibits a wider bandwidth characterized by complex dy-
namical patterns, observable even at the lowest excitation amplitude values. Upon
visual examination and comparison of the DRDs with the OPDs of each case, regions
of good performance are characterized by complex dynamical patterns, especially
hyperchaotic (HC) attractors. The majority of poor performance regions are associ-
ated with 1T regular responses. 2T and chaotic (CH) are also common and appear
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Figure 6.23: DRD, OPD for the overall average output power, P̄avg, and the contri-
bution of each transducer in power conversion for (a) Config. 1, (b) Config. 2, (c)
Config. 3, and (d) Config. 5. DRD colorbars represent different types of dynamical
responses, and OPD colorbars represent the range of P̄avg displayed by each config-
uration. Light red and orange bars are the % contribution of the piezoelectric and
electromagnetic transducers in the overall conversion, respectively. Diagrams are
constructed with a grid of 1000× 1000 points of the γ × Ω parameter space.

in certain clusters within the parameter domain. The main peak power occurs in a
concentrated region (labeled as A) associated with the resonance of the z̄-direction,
followed by a secondary peak (labeled as B) associated with the resonance of the
x̄-direction that transmits more energy to the pendulum. This secondary peak arises
in different positions of the diagram and is associated with the value of Ωs. That
is, a configuration with higher Ωs presents a secondary peak at higher excitation
amplitudes, and vice-versa. Configuration 1 presents the wider bandwidth, while
configuration 3 presents the highest maximum output power, despite the reduced
bandwidth. Additionally, for all cases in this set of configurations, the electromag-
netic transducer predominantly contributes to the power conversion of the MHEH.

Figure 6.24 presents results of Configurations 4, 6 and 7. These configurations
are situated in the blue regions (both light and navy blue) of the P̄ (overall)

norm and P̄ (em)
norm

OCDs of Figure 6.22b and 6.22c, and in the blue to green regions of the P̄ (pz)
norm OCD

of Figure 6.22a. In this set of configurations, it is observed that the complex regions
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Figure 6.24: DRD, OPD for the overall average output power, P̄avg, and the contri-
bution of each transducer in power conversion for (a) Config. 4, (b) Config. 6, and
(c) Config. 7. DRD colorbars represent different types of dynamical responses, and
OPD colorbars represent a range of P̄avg displayed by each configuration. Light red
and orange bars represent the % contribution of the piezoelectric and electromag-
netic transducers in the overall conversion, respectively. Diagrams are constructed
with a grid of 1000× 1000 points of the γ × Ω parameter space.

associated with higher performances are distributed in small clusters, showing a re-
duced, yet significant, bandwidth. Moreover, the maximum output powers achieved
surpass those of the majority of the previous configurations presented in Figure
6.23. They are concentrated in the z̄-direction resonance region. Additionally, these
configurations exhibit a more balanced distribution of converted power between the
two transducers.

On the other hand, Figure 6.25 presents a set of four configurations that are lo-
cated in the blue regions of the P̄ (pz)

norm OCD in Figure 6.22a, and in the purple regions
of the remaining OCDs in Figures 6.22b and 6.22c. In general, these configurations
are characterized by the dominance of the piezoelectric transducer in energy con-
version. In fact, Configurations 10 and 11 exhibit a predominance exceeding 96%.
They also display very narrow bandwidths associated with the peak power in the
z̄-direction resonance region, except for Configuration 9, which shows another nar-
row secondary peak at higher excitation frequencies due to the higher Ωs values.
This group of configurations represents the worst-case scenario in the utilization of
MHEH, as it offers minimal advantages in terms of performance when attaching the
pendulum to the classic piezoelectric energy harvester (CPEH).

The analysis outlined in this subsection demonstrates that the Occurrence Di-
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Figure 6.25: DRD, OPD for the overall average output power, P̄avg, and the con-
tribution of each transducer in the power conversion for (a) Config. 8, (b) Config.
9, (c) Config. 10, and (d) Config. 11. DRD colorbars represent different types of
dynamical responses, and OPD colorbars represent a range of P̄avg displayed by each
configuration. Light red and orange bars represent the percentage contribution of
the piezoelectric and electromagnetic transducers in the overall conversion, respec-
tively. Diagrams are constructed with a grid of 1000 × 1000 points of the γ × Ω
parameter space.

agram (OCD) is a powerful tool for mapping and determining the optimal and
suboptimal combinations of parameters within a specific parameter space. Despite
its substantial computational resource requirements, needing the prior assembly of a
considerable number of diagrams for its accurate construction, the OCD offers an ef-
fective method to map and identify the frequency of occurrence of key characteristics
of a dynamical system.

6.5.4 Dynamical Patterns vs Performance

The correlation between dynamics and performance is an essential key to the
energy harvesting analysis. In this regard, it is important to identify the types of re-
sponses and patterns. Besides, it is interesting to evaluate the influence of pendulum
incorporation on the harvester response that indeed has demonstrated the poten-
tial to significantly enhance operational bandwidth, as presented in Figures 6.23,
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6.24 and 6.25. On this basis, one of the key points to address is to identify which
pendulum dynamical patterns produce these regions of enhanced performance. To
this end, Figure 6.26 presents the concept of a Dynamical Pattern Diagram (DPD)
for Configuration 1. A DPD is an extension of the Dynamical Responses Diagram
(DRD) that accounts for the classification and mapping of specific dynamical pat-
terns of a dynamical system in a two-dimensional parameter space. In this case,
the DPDs monitor whether the pendulum rotates or not. Six patterns are iden-
tified: RO (Light Cyan), when the pendulum oscillates with regular motion and
does not rotate; IO (Dark Cyan), when it oscillates with an irregular motion and
does not rotate; RR (Light Lime Green), when it rotates with a regular motion; IR
(Lime Green), when it rotates with an irregular motion; RM (Light Salmon), when
it presents a regular intermittent mix of oscillatory and rotatory motions; and IM
(Lava Red), when it presents a mix of oscillatory and rotatory irregular motions.

Table 6.4: Conditions for each dynamical pattern classification of the MHEH.

Dynamical Pattern Classification Conditions

RO (Regular Oscillation)
• ϕ̄min > −π and ϕ̄max < π

• sgn( ˙̄ϕmin) ̸= sgn( ˙̄ϕmax)
• Attractor ̸= CH and Attractor ̸= HC

IO (Irregular Oscillation)
• ϕ̄min > −π and ϕ̄max < π

• sgn( ˙̄ϕmin) ̸= sgn( ˙̄ϕmax)
• Attractor = CH or Attractor = HC

RR (Regular Rotation)
• ϕ̄min ≤ −π and ϕ̄max ≥ π

• sgn( ˙̄ϕmin) = sgn( ˙̄ϕmax)
• Attractor ̸= CH and Attractor ̸= HC

IR (Irregular Rotation)
• ϕ̄min ≤ −π and ϕ̄max ≥ π

• sgn( ˙̄ϕmin) = sgn( ˙̄ϕmax)
• Attractor = CH or Attractor = HC

RM (Regular Mixed)
• ϕ̄min ≤ −π and ϕ̄max ≥ π

• sgn( ˙̄ϕmin) ̸= sgn( ˙̄ϕmax)
• Attractor ̸= CH and Attractor ̸= HC

IM (Irregular Mixed)
• ϕ̄min ≤ −π and ϕ̄max ≥ π

• sgn( ˙̄ϕmin) ̸= sgn( ˙̄ϕmax)
• Attractor = CH or Attractor = HC

Specifically, it monitors the coordinate transformed state space of the pendulum
ϕ̄ × ˙̄ϕ and its associated dynamical attractor. The process of coordinate transfor-
mation of ϕ̄ is discussed in Section 6.5.1, and it is done due to the phase subspace of
the pendulum being characterized by a cylinder topology. Based on the minimum
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and maximum values of the angular position of the pendulum, ϕ̄min and ϕ̄max, re-
spectively, on the signal of the angular velocity ˙̄ϕ, and on the dynamical response
classification of the DRD, it classified six different dynamical patterns of rotation
as summarized in Table 6.4. Each classification is represented by a distinct color as
presented in Figure 6.27.
Each pattern is exemplified by selected points, labeled with numbers from 1 to 6,
as marked by black circles within the DPD in Figure 6.26a. Four phase subspaces
and Poincaré maps (x̄ × ˙̄x, z̄ × ˙̄z, ϕ̄ × ˙̄ϕ, and v̄ × Ī) for each point are depicted
in Figures 6.26b to 6.26g, representing each different pattern. The color of each
phrase subspace is associated with the color used to classify the pattern, and the
exact γ and Ω values used for the selected points are described in Table 6.5 for
reproducibility.

Table 6.5: Exact corresponding values of γ and Ω marked in the DPD of Figure 6.26
used to exemplify the different dynamical patterns.

Point Classification γ Ω

1 RO 0.21012012012012 0.45023023023023
2 IO 0.05022022022022 0.814764764764765
3 RR 0.311161161161161 0.563773773773774
4 IR 0.384244244244244 0.370550550550551
5 RM 0.377377377377377 0.796836836836837
6 IM 0.25034034034034 0.860580580580581

Figure 6.27 presents a series of DPDs associated with each configuration previ-
ously described in Table 6.2. By comparing with the OPDs previously presented in
Figures 6.23, 6.24 and 6.25, it is noticeable that triggering a rotational or a mixed
dynamical pattern in the pendulum results in an enhanced performance outside the
typical z̄-direction resonance zone due to the contribution of the electromagnetic
transducer. In fact, this is the reason for the configurations with larger bandwidths
display a greater contribution to energy conversion from the electromagnetic trans-
ducer. Furthermore, Figure 6.27l supports the previous conclusions by showing the
percentage of each dynamical pattern within the DPD for each distinct configura-
tion.

Another crucial topic is the type of dynamical response that yields the best
performances. In this regard, from the 100 unique scenarios examined in Subsection
6.5.2, the total percentage of attractors is accounted for, as displayed in Figure 6.28a.
In essence, 25×106 time series, considering different combination of γ, Ω, Ωs and Ωϕ

parameters, are analyzed. It is observed that 72% of the dynamical responses are
regular 1T attractors, followed by 19.2% of hyperchaotic (HC) ones. Chaotic (CH),
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Figure 6.26: Classification of different pendulum dynamical patterns. (a) Dynamical
Pattern Diagrams (DPD) of Config. 1 classifying six distinct patterns: RO (light
cyan) - Regular Oscillation, IO (dark cyan) - Irregular Oscillation, RR (light lime
green) - Regular Rotation, IR (lime green) - Irregular Rotation, RM (light salmon)
- Regular Mixed, and IM (lava red) - Irregular Mixed. Black circle points are
associated with different patterns. Phase subspaces representation of the (b) RO
pattern (point 1), (c) IO pattern (point 2), (d) RR pattern (point 3), (e) IR pattern
(point 4), (f) RM pattern (point 5), and (g) IM pattern (point 6). The DPD is
constructed with a grid of 1000× 1000 points of the γ × Ω parameter space.
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Figure 6.27: Dynamical Patterns Diagrams (DPDs) for the classification of six dif-
ferent types of pendulum dynamical patterns. The DPDs are associated with (a)
Configuration 1, (b) Configuration 2, (c) Configuration 3, (d) Configuration 4, (e)
Configuration 5, (f) Configuration 6, (g) Configuration 7, (h) Configuration 8, (i)
Configuration 9, (j) Configuration 10, (k) Configuration 11. Each diagram is con-
structed with a grid of 1000×1000 points of the γ×Ω parameter space. (l) Percentage
of occurrence of each type of pattern for each configuration.
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2T and MP also appear in smaller quantities. Additionally, the amount of 3T, 4T
and 5T attractors is very small compared to the others. When the same analysis
is performed, but only accounting for the dynamical responses that are above the
threshold of P̄norm ≥ 0.3, as done in the OCD analysis, the scenario reverses, as
presented in Figure 6.28b. In this case, the predominant attractor becomes the
hyperchaotic (HC) with 68.5%, followed by 15.7% of 1T attractors, and by 11.5%

of Chaotic (CH) responses. The remaining dynamical responses stay relatively the
same. Additionally, the same analysis with the same threshold is performed for each
transducer, as indicated in Figures 6.28c and 6.28d. It is observed that the number
of hyperchaotic responses increases and the 1T responses decrease even more for the
electromagnetic transducer. Conversely, 1T attractors increase and hyperchaotic
attractors decrease for the piezoelectric transducer.
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(a) Attractor occurrence in all cases analyzed
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(d) Attractor occurrence − P̄
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Figure 6.28: Percentage of dynamical responses for the 100 scenarios studied in sub-
section 6.5.2. (a) Overall percentage with no filter, (b) Percentage of attractors using
the filter threshold of P̄norm ≥ 0.3 considering the two transducers. (c) Percentage of
attractors using the filter threshold of P̄ (pz)

norm ≥ 0.3 considering only the piezoelectric
transducer. (d) Percentage of attractors using the filter threshold of P̄ (em)

norm ≥ 0.3
considering only the electromagnetic transducer. Each color represents a distinct
dynamical response. Overall, 25× 106 time series considering unique combinations
of 4 key parameters were used in the analysis.

To further investigate the regions of high performance and corroborate the find-
ings presented in Figure 6.28, two configurations from each of Figures 6.23, 6.24
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and 6.25 are selected. For each chosen configuration, the overall average maximum
output power, P̄ (max)

avg , for each value of excitation amplitude, γ, is marked as colorful
points in the corresponding configuration OPD, as showed in Figures 6.29, 6.30 and
6.31. Grayscale colors within the OPDs are used to reference the overall lower and
higher output powers. Colored points are the points of maximum output power for
each distinct value of γ, with the accompanying colorbar indicating their magni-
tude. The colorbars are truncated within 50% of their maximum value for better
representation. The maximum output power magnitudes for each configuration are
displayed at the top of the pointing end of the colorbars. Constant values of γ
(γ ≈ 0.1, γ ≈ 0.2 and γ ≈ 0.3) are selected, labeled with capital letters, and plotted
below the OPDs to display the bandwidths at each selected magnitude of excita-
tion. For each of the three selected values of γ, its respective point of maximum
is marked as red circles and labeled with a number from 1 to 3. Their respective
phase subspaces and Poincaré maps are built: x̄ × ˙̄x, representing the x-direction,
z̄ × ˙̄z, representing the z-direction, ϕ̄× ˙̄ϕ, representing the angular subspace of the
pendulum, and v̄ × Ī representing the electrical coordinate domain.

Specifically, Figure 6.29 depicts Configurations 1 and 2, where the electromag-
netic transducer predominantly contributes to energy conversion. The OPDs for
these two cases are represented in Figures 6.29a and 6.29b, demonstrating that
the points of maximum are clustered near the resonance regions. Figures 6.29b
and 6.29c present the frequency response for each selected fixed γ, more clearly
illustrating the wider bandwidth associated with these configurations for distinct
discrete magnitudes of excitation. From Figure 6.29e to 6.29j, one can observe the
associated phase subspaces and Poincaré maps of each point of maximum marked
in Figures 6.29b and 6.29c. These subspaces support the findings associated with
Figures 6.27 and 6.28, indicating that the dynamical responses associated with the
best performances are the hyperchaotic (HC) and 1T attractors, respectively. Also,
these performances must be associated with the triggering of the pendulum’s rota-
tion or mixed dynamical pattern, as all the selected points of maximum show this
characteristic, as highlighted in the ϕ̄× ˙̄ϕ phase subspaces.

Figure 6.30 presents the same analysis for Configurations 4 and 6, where the con-
tribution of both transducers is balanced. In this scenario, the points of maximum
within the OPDs are more concentrated in a single cluster, resulting in narrower, yet
still significant, bandwidths. This is further illustrated by the frequency response
for each selected value of γ, as presented in Figures 6.30c and 6.30d. The phase
subspaces associated with the selected red points of maximum exhibit a consistent
behavior, with more hyperchaotic responses than periodic ones, as displayed from
Figures 6.30e to 6.30f. Figure 6.30f is particularly noteworthy as it shows a 2T
regular response at a point of maximum, representing 3.1% of the high-performance
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(c) OPD γ slices for Config. 1
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(d) OPD γ slices for Config. 2

D: γ ≈ 0.1

E: γ ≈ 0.2

F: γ ≈ 0.3
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Figure 6.29: Maximum overall average output power, P̄ (max)
avg , as a function of γ for

Configs (a) 1 and (b) 2. Panels (c) and (d) display the slices A, B, C, and D, E, F
of the OPDs, respectively, for 3 values: γ ≈ 0.1, γ ≈ 0.2 and γ ≈ 0.3. Red circles
denote the P̄ (max)

avg of each slice. Four phase subspaces (x̄ × ˙̄x, z̄ × ˙̄z, ϕ̄ × ˙̄ϕ, and
v̄× Ī) and their Poincaré maps of the steady-state response are shown representing
red points (e) 1, (f) 2, and (g) 3 for Config. 1, and red points (h) 1, (i) 2, and (j) 3
for Config. 2. Non-maximum values within the OPDs are plotted in grayscale.
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(c) OPD γ slices for Config. 4

G: γ ≈ 0.1

H: γ ≈ 0.2

I: γ ≈ 0.3
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(d) OPD γ slices for Config. 6

J: γ ≈ 0.1

K: γ ≈ 0.2

L: γ ≈ 0.3
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Figure 6.30: Maximum overall average output power, P̄ (max)
avg , as a function of γ for

Configs. (a) 4 and (b) 6. Panels (c) and (d) display the slices G, H, I, and J, K, L
of the OPDs, respectively, for 3 values: γ ≈ 0.1, γ ≈ 0.2 and γ ≈ 0.3. Red circles
denote the P̄ (max)

avg of each slice. Four phase subspaces (x̄ × ˙̄x, z̄ × ˙̄z, ϕ̄ × ˙̄ϕ, and
v̄× Ī) and their Poincaré maps of the steady-state response are shown representing
red points (e) 1, (f) 2, and (g) 3 for Config. 4, and red points (h) 1, (i) 2, and (j) 3
for Confi. 6. Non-maximum values in the OPDs are plotted in grayscale.
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(c) OPD γ slices for Config. 8

M: γ ≈ 0.1

N: γ ≈ 0.2
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Ī

-0.17 0.18x̄
-0.14

0.15

˙̄ x

(f) Point 2 - Config. 8

-3.22 3.22z̄
-2.65

2.65

˙̄ z

-0.04 0.04φ̄
-0.07

0.07

˙̄ φ

-1.02 1.02v̄
-0.02

0.01

Ī
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(d) OPD γ slices for Config. 10

P: γ ≈ 0.1

Q: γ ≈ 0.2

R: γ ≈ 0.3
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Figure 6.31: Maximum overall average output power, P̄ (max)
avg , as a function of γ for

Configs. (a) 8 and (b) 10. Panels (c) and (d) display the slices M, N, O, and P,
Q, R of the OPDs, respectively, for 3 values: γ ≈ 0.1, γ ≈ 0.2 and γ ≈ 0.3. Red
circles denote the P̄ (max)

avg of each slice. Four phase subspaces (x̄× ˙̄x, z̄× ˙̄z, ϕ̄× ˙̄ϕ, and
v̄× Ī) and their Poincaré maps of the steady-state response are shown representing
red points (e) 1, (f) 2, and (g) 3 for Config. 8, and red points (h) 1, (i) 2, and (j) 3
for Config. 10. Non-maximum values in the OPDs are plotted in grayscale.
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responses above the P̄norm ≥ 0.3 threshold. Furthermore, another fact to highlight is
that two of the six selected red points of maximum do not show pendulum rotation.
The first is depicted in Figure 6.30g, showing a high-amplitude regular oscillatory
dynamical pattern (RO), and the second is displayed in Figure 6.30h, showing also
RO pattern, but with low amplitude. The latter point corresponds to the point of
maximum of the J slice (yellow curve) showing that the high-amplitude pendulum’s
motion, in this case, commences at higher excitation levels.

Figure 6.31 presents the same analysis for Configurations 8 and 10, where the
piezoelectric transducer dominates the energy conversion. These configurations rep-
resent the least favorable scenario for the MHEH, characterized by a very narrow
bandwidth. This is further illustrated by the red points of maximum that are pre-
cisely concentrated at the resonance region of the z̄-direction. It also supports the
findings of Figure 6.28c, which shows a high occurrence percentage of 1T attrac-
tors in the regions of high performance above the P̄norm ≥ 0.3 threshold. It is also
important to highlight that the pendulum fully rotates around its axis (presents a
high-amplitude motion) in only one selected red point of maximum.

Summarizing, this subsection effectively highlights the association of hyper-
chaotic responses and the full rotation of the pendulum with wider bandwidths
and enhanced performance.

6.5.5 Performance Comparison
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Figure 6.32: Comparison between the CPEH and HMEH performances. (a) OPD
for the CPEH, (b) OPD for the HMEH, (c) resulting PCD. Rainbow colors represent
P̄avg of each harvester. Black and red colors represent the ∆P̄ (%) value.
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Finally, a performance comparison is performed between the MHEH best con-
figuration in terms of bandwidth (Configuration 1) and its CPEH counterpart. The
comparison is summarized in Figure 6.32, where Figure 6.32a shows the CPEH
OPD and Figure 6.32b depicts the HMEH Configuration 1 OPD. By comparing
both OPDs using the Performance Comparison Diagram (PCD), as described in
Chapter 3, it is revealed that the HMEH indeed performs better than its linear
counterpart in all regions of the studied γ × Ω parameter domain, except for the z
direction resonance region, characterized by a black strip around Ω = 0.85, and a
small region characterized by poor performance of both harvesters around Ω = 1

and 0.01 ≤ γ ≤ 0.25. It is important to highlight that the performance enhancement
in regions far from 0.7 ≤ Ω ≤ 1.3 can achieve values of ∆P̄ ≥ 10000%.
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Chapter 7

Conclusions

This work proposes and presents the analysis of two types of mechanical energy
harvesting devices. Each device is designed to address a current challenge in the
field identified in the existing literature. The first device addresses the application
of energy harvesting systems in limited available spaces while maintaining high per-
formance through the exploitation of multistability characteristics. The design of
the second device focuses on enabling multidirectional energy harvesting employ-
ing pendulum structures. The employment of hybrid transducer schemes to enable
optimal performance of this type of structure is also discussed. All the analyses
are conducted from a nonlinear dynamics perspective, developed to enhance the
characterization of the dynamics and the performance of energy harvesting devices.

Initially, a comprehensive literature review is carried out, revealing the impor-
tance of this study by outlining the main devices already developed by other authors,
elucidating the most notable nonlinear modulations used to enhance the performance
of those devices, and identifying challenges in the field that still need addressing.

In the subsequent Chapter, the description of the methodology of analysis used
throughout this thesis is addressed. The methodology is based on a nonlinear dy-
namics perspective and uses suitable complementary tools to build a robust analy-
sis. These include Poincaré maps, Lyapunov exponents, linear stability theory, and
basins of attraction. These tools are synergistically combined to develop a series of
diagrams to map certain characteristics such as the type of motion, the occurrence of
certain features, the robustness of a solution in a given scenario, and more. Through
these diagrams-based analyses, a robust qualitative overview of the performance of
these systems is achieved.

A generalization of the modeling of symmetric multistable systems is developed
and summarized, which serves as a foundational step in the development of the
model of the compact energy harvester presented in Chapter 5.
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7.1 Conclusions on the Compact Multistable En-

ergy Harvester

In Chapter 5, a new compact mechanical energy harvester is presented, aiming at
applications with limited available spaces, while maintaining optimal performance.
A multistable nonlinear structure is designed by incorporating key features of the
classical bistable energy harvester and the bistable dual inner-outer beam structure
previously described in the existing literature.

The proposed system integrates the compact arrangement of the dual beams,
enhanced by magnetic interactions provided by two sets of magnets and transducers.
These magnetic interactions provide unprecedented multistable characteristics to the
system, and the usage of two transducers enables the advantageous utilization of free
useful space within the structure to enhance energy harvesting capacity.

A 2-degrees-of-freedom electromechanical reduced-order model is developed, rep-
resenting the main qualitative aspects of the proposed energy harvester. Magnetic
interactions are modeled by polynomial Duffing-type terms, and the model is nor-
malized to isolate key relationships between system parameters.

Stability analysis reveals that increasing the stiffness ratio and/or the mass ra-
tio between beams can reduce the number of equilibrium points of the system at
different rates. Also, by considering different magnetic restitution parameters (α1,
α2, β1, β2), the system can achieve tetrastability (with four stable equilibria), var-
ious forms of bistability (with two stable equilibria), and monostability (with one
stable equilibrium). Taking into account these differences, eight configurations are
selected based on the magnetic setups coupled with different elastic properties for a
comprehensive performance analysis.

7.1.1 On the General Overview of the Dynamics and Perfor-

mance

Initially, the most complex configuration with (α1, α2, β1, β2) = (−2,−1, 1, 1) is
chosen, and a general overview of its characteristics within the external excitation
parameter domain is displayed. For this magnetic setup, two configurations are
selected for further dynamical and performance investigations: one with a softer
inner beam, which characterizes a multistable state with 4 equilibrium points; and
another with the outer and the inner beams with the same stiffness, characterizing
a bistable state.

The dynamics of the two configurations are mapped within the external exci-
tation parameter domain, showing rich and complex phenomena characterized by
various periodic, chaotic and hyperchaotic orbits. The multistable configuration
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predominantly exhibits period-1T, period-3T, and hyperchaotic orbits, while the
bistable configuration additionally shows the emergence of chaotic regions. In both
cases, period-2T relevant orbits also arise, but in smaller regions. Other types of
dynamical responses are also found but not expressively.

The performance analysis revealed that the output electrical response of the
first piezoelectric element is proportional to the displacement of the first degree of
freedom, while the response of the second piezoelectric element is proportional to the
relative displacement between the first and second degrees of freedom. Furthermore,
it is observed that the harvester can display high output power when the system’s
deflection is sufficient to pass through or around all equilibrium points.

By analyzing additional configurations with different stiffness ratios, it is ob-
served that for multistable configurations with 4 stable positions, period-3T orbits
are associated with the majority of the points of maximum output power within
the excitation parameter domain. In contrast, bistable configurations exhibit a
wider range of dynamical responses (primarily period-1T, period-3T, chaotic and
hyperchaotic orbits) for the major proportion of points of maximum output power.
Additionally, an increase in performance at higher frequencies is observed as the
stiffness ratio increases.

Furthermore, the analysis of the basins of attraction for the forced system in the
configuration with 4 stable equilibrium positions highlights that operating under
high-frequency and high-amplitude excitation conditions can result in the emer-
gence of numerous coexisting solutions. In such scenarios, the predictability of the
system’s performance is reduced, emphasizing the imperative need to implement a
control scheme to ensure good performance in these conditions. We believe that
this characteristic holds for all other configurations analyzed in this work due to
the system’s construction and the similarity in its qualitative performance metrics.
Nevertheless, in order to assert with absolute certainty, further detailed analyses of
the remaining configurations must be carried out.

7.1.2 On the Performance Considering Different Magnetic

Setups

Based on the stability analysis, the total eight key configurations with distinct
characteristics were selected to represent all the possible configurations of the system.
The analysis involving these configurations is divided into two aspects to evaluate
the system’s performance under low and high excitation levels.

Results show that for very low excitation levels, monostable configurations yield
higher output powers but inferior bandwidths compared with bistable configura-
tions. Conversely, bistable configurations exhibit superior bandwidths but lower
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output power. Among the configurations, the tetrastable configuration performs
the poorest in this scenario. However, for low to high excitation levels, configura-
tions I (tetrastable) and II (bistable) associated with magnetic parameters (α1, α2,
β1, β2) = (−2, −1, 1, 1) present superior performance in terms of maximum power
output and bandwidth when compared to other configurations. The other bistable
configurations exhibit similar performance when compared to each other. At very
high excitation levels, the performance difference between bistable and tetrastable
configurations reduces, as well as between monostable and bistable configurations.
Nevertheless, all monostable configurations consistently underperform in scenarios
with low to very high excitation levels.

Furthermore, the observed variations in system behavior across these different
scenarios are closely tied to the input energy levels. Tetrastable and bistable con-
figurations exhibit potential energy barriers, which under low mechanical excitation
levels, cannot be overcome due to insufficient energy, limiting the displacement of
these systems and resulting in poor performance. As the system is powered with
enough mechanical energy, the multistable characteristics enhance the displacement
of the system and its complexity, resulting in enhanced performance. Moreover, at
high excitation levels, results indicate that the orbits demonstrating optimal per-
formance consistently manifest as 1T attractors when occurring at intermediary
frequency values and as 3T attractors when observed at higher frequency values.
These attractors exhibit similar shapes.

7.1.3 Comparison Analysis and Final Considerations

Moreover, regions of interest within the parameter domain are identified based
on energy harvesting performance. A comparison between eight different configu-
rations of the proposed harvester and the classical bistable harvester is conducted.
The proposed harvester exhibits comparable bandwidth to the classical bistable har-
vester while surpassing it in terms of output power in almost all operation scenarios
of interest. Nevertheless, when considering the output power density, the superi-
ority of the proposed harvester diminishes for specific operational conditions such
as moderate performance regions, expressive multiple solution regions, and higher
frequencies.

In conclusion, the qualitative analysis presented in this work suggests that the
proposed harvester is a promising alternative for applications in closed compact
spaces, offering significant advantages over the classical bistable energy harvester.
For future works, experimental verification and further model improvements are
being pursued to enhance robustness. These next steps can verify and strengthen
the findings presented in this study, contributing to the strategies to enhance energy
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harvesting capacity.

7.2 Conclusions on the Multidirectional Hybrid En-

ergy Harvester

In Chapter 6, a novel hybrid multidirectional energy harvester is proposed. The
new system employs a pendulum structure to achieve multidirectionality and mul-
tiple transduction mechanisms to enhance energy conversion. Specifically, a piezo-
electric transducer is attached to the cantilever structure, and an electromagnetic
transducer is incorporated into the rotational support of the pendulum. Three
distinct harvesters of the same class are compared: (1) the classical piezoelectric
energy harvester (CPEH), which converts energy in a single direction; (2) the multi-
directional energy harvester (MPEH), comprising the same structure as the CPEH
combined with a pendulum; and (3) the proposed multidirectional hybrid energy
harvester (MHEH), being an evolution of the previous harvester.

A theoretical model is established to describe the main characteristics of the
three harvesters and numerical simulations are carried out in order to compare
their performances. Results demonstrate that the use of the pendulum structure
to achieve efficient multidirectional conversion (utilizing the MPEH), is insufficient
since it can work as a dynamical absorber, thereby reducing the system’s overall
performance when compared to its classic counterpart (CPEH). Alternatively, by
employing the proposed MHEH, results show an impressive increase of performance
in both maximum output power and bandwidth when compared to the CPEH,
demonstrating that the proposed system not only retains the desirable characteristics
of the MPEH but can also effectively address its limitations.

7.2.1 On the Role of the Electrical Parameters

The performance of the MHEH system is analyzed by examining the influence of
key parameters. Initially, the optimal resistance parameters are identified in order
to find the maximum output power regions of both transducers. Using the optimal
resistance values, it is demonstrated that the ratio of electromechanical couplings
(η = χem/χpz = κem/κpz) should be approximately 0.8 for both piezoelectric and
electromagnetic transducers to effectively contribute to energy conversion. If this
ratio is too low, the piezoelectric element dominates the energy conversion, whereas
if η is too high, the electromagnetic transducer converts more energy than the piezo-
electric element. Furthermore, it is observed that the electromagnetic transducer
predominantly handles the energy conversion at low excitation amplitudes. Alter-
natively, the piezoelectric transducer takes precedence in energy conversion as the

146



excitation amplitudes increase. The influence of the natural frequencies of the struc-
ture (natural frequencies in each direction of the Cartesian plane) are evaluated and
results show that a stiffer horizontal direction (perpendicular to the direction of
gravity) enhances the bandwidth of the system.

7.2.2 On the Role of the Mechanical Parameters

Subsequently, a parametric analysis is conducted, focusing on two key structural
parameters, Ωs and Ωϕ, and two excitation parameters, γ and Ω. Ωs represents the
ratio between the natural frequencies of the beam structure, while Ωϕ represents the
ratio between the linearized natural frequency of the pendulum element and the nat-
ural frequency in the piezoelectric polarized direction. Greater values of Ωs represent
wider beam widths (a stiffer direction perpendicular to the piezoelectric element),
and vice versa, while greater values of Ωϕ represent pendulum elements with shorter
lengths, and vice versa. γ represents the magnitude of external excitation, while Ω

represents the frequency of external excitation.
Initially, system dynamics is assessed considering a specific external source, re-

vealing complex types of periodic, quasi-periodic and aperiodic dynamical responses.
Many of these dynamical attractors are characterized by the pendulum rotation, the
pendulum oscillation around its equilibrium position, or mixed patterns where both
oscillation and rotation occur.

Furthermore, it is demonstrated that a small change in any of the chosen four
parameters can result in a complete change in the harvester’s performance char-
acteristics. As a result, an extensive array of 25 × 106 time series simulations are
performed and compared to determine the best and the worst combination of struc-
tural parameters in terms of energy harvesting performance. Results show that
configurations with greater values of Ωs combined with small values of Ωϕ results in
better performances regarding the operational bandwidth of the MHEH. In other
words, configurations using beams with larger widths and wider pendulum lengths
perform better than configurations with the opposite characteristics.

7.2.3 On the Comparison of Different Configurations

Afterward, it was observed that configurations with the best performances in
terms of bandwidth demonstrated that both transducers contribute significantly to
the overall energy conversion, but with the predominance of the electromagnetic
transducer. Moreover, configurations that present balanced levels of contributions
in energy conversion by both transducers were demonstrated to have shorter band-
widths with greater levels of maximum output power. Alternatively, configurations
that show the predominance of the piezoelectric transducer demonstrated tiny band-
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widths comparable to those presented by the CPEH in the literature. These config-
urations represent the worst-case scenario for the MHEH harvester.

A comparison among dynamical responses and patterns is carried out, showing
that the majority of dynamical responses related to the overall higher performances
are associated with hyperchaotic attractors with 68.5% of occurrence, followed by
1T attractors with 15.7% occurrence, and chaotic with 11.5% occurrence. 2T regular
responses present a 3.1% of the total occurrences. Results suggest an association of
larger operational bandwidths with the irregular dynamical pattern characterized
by both oscillation and rotation of the pendulum (irregular mixed).

Finally, a comparison between the best HMEH configuration (Configuration 1)
in terms of performance with its CPEH counterpart reveals a drastic increase in
performance in almost all regions of the excitation parameter domain, except for the
z direction resonance zone. In some regions, the increase in performance exceeds
10000%.

Overall, this study establishes the hybrid multidirectional energy harvester as
a solution that maintains the desirable multidirectional characteristics while miti-
gating the drawbacks associated with attaching a pendulum without an associated
transducer. Also, the analyses presented valuable insight into the structural char-
acteristics of the MHEH to achieve higher performances in operational conditions
that require multidirectional capabilities.

7.3 Final Considerations

This work underscores the importance of conducting extensive analysis based on
a nonlinear dynamics perspective to map, quantify, and understand key design char-
acteristics of energy harvesting systems. The nonlinear dynamics approach allows
for a deeper exploration of the intrinsic complex behaviors and interactions of these
systems, leading to more efficient and robust designs. This is particularly relevant
in the current in the current decade, where high-performance computing is widely
accessible. Furthermore, this type of analysis is recommended not only for numeri-
cal investigations but also for experimental studies, as the techniques presented are
applicable to practical scenarios.

Moving forward, a high-performance, user-friendly software package is currently
being developed. This package will include all the essential tools for analyzing
energy harvesters and other dynamical systems using the proposed method. The
intention is to release this software as an open-source package for the benefit of
the scientific community. At the same time, experimental studies on the proposed
energy harvesters are also underway.
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Appendix A

Elementary Symmetric Polynomials

Symmetric polynomials are mathematical functions that exhibit a particular
property: when you interchange the positions of any pair of variables within the
polynomial, the function retains its original form. These symmetric polynomials
can be elegantly represented using elementary symmetric polynomials. In the con-
text of a polynomial with n variables denoted as {Γ1,Γ2, · · · ,Γn}, the corresponding
set of elementary symmetric polynomials is defined as {e0, e1, · · · , n}:

e0 = 1

e1 =
∑

1≤j≤n

Γj

e2 =
∑

1≤j<k≤n

ΓjΓk

e3 =
∑

1≤j<k<l≤n

ΓjΓkΓl

...

en = Γ1Γ2 · · ·Γn

In general, for 0 ≤ m ≤ n,

em =
∑

1≤j1<j2<···<jm≤n

Γj1Γj2 · · ·Γjm . (A.1)

In the context of monic polynomials of the form xn+cn−1x
n−1+· · ·+c2x2+c1x+c0,

with n ≥ 0, the following identities arise:

177



n∏
j=1

(x− Γj) = xn − e1 (Γ1, · · · ,Γn)x
n−1 + e2 (Γ1, · · · ,Γn)x

n−2 + · · ·

· · ·+ (−1)nen (Γ1, · · · ,Γn)

=
n∑

j=1

(−1)j ej (Γ1, · · · ,Γn)x
n−j

(A.2)

n∏
j=1

(x+ Γj) = xn + e1 (Γ1, · · · ,Γn)x
n−1 + e2 (Γ1, · · · ,Γn)x

n−2 + · · ·

· · ·+ en (Γ1, · · · ,Γn)

=
n∑

j=1

ej (Γ1, · · · ,Γn)x
n−j

(A.3)

• Example:

For n = 1:
e0 (Γ1) = 1,

e1 (Γ1) = Γ1.

For n = 2:
e0 (Γ1,Γ2) = 1,

e1 (Γ1,Γ2) = Γ1 + Γ2,

e2 (Γ1,Γ2) = Γ1Γ2.

For n = 3:
e0 (Γ1,Γ2,Γ3) = 1,

e1 (Γ1,Γ2,Γ3) = Γ1 + Γ2 + Γ3,

e2 (Γ1,Γ2,Γ3) = Γ1Γ2 + Γ1Γ3 + Γ2Γ3,

e3 (Γ1,Γ2,Γ3) = Γ1Γ2Γ3.

For n = 4:
e0 (Γ1,Γ2,Γ3,Γ4) = 1,

e1 (Γ1,Γ2,Γ3,Γ4) = Γ1 + Γ2 + Γ3 + Γ4,

e2 (Γ1,Γ2,Γ3,Γ4) = Γ1Γ2 + Γ1Γ3 + Γ1Γ4 + Γ2Γ3 + Γ2Γ4 + Γ3Γ4,

e3 (Γ1,Γ2,Γ3,Γ4) = Γ1Γ2Γ3 + Γ1Γ2Γ4 + Γ1Γ3Γ4 + Γ2Γ3Γ4,

e4 (Γ1,Γ2,Γ3,Γ4) = Γ1Γ2Γ3Γ4.
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Appendix B

Algorithms

This appendix provides illustrative representations of some algorithms used in
this work. The algorithms were implemented using C and Python programming
languages. Specifically, the C language (C17 standard) was used for the simulation
algorithms to solve the models proposed in this thesis, primarily for performance
reasons. Python 3.11.8, along with the pandas 2.2.0, NumPy 1.26.3, and Matplotlib
3.8.2 libraries, was used to manipulate and visualize the data produced by the simula-
tions. Particularly, the stability analysis presented in Section 5.2 is performed using
Python along the SymPy 1.12 library that allows symbolic mathematical manipu-
lations allied with the visualization framework already established in all the other
analyses. Moreover, the derivations of the electromechanical equations through the
energetic approach, for both CMEH and MHEH, were performed with the assistance
of Wolfram Mathematica 13.3 software.

Finally, the fourth-order Runge-Kutta integrator was employed to solve the non-
linear ODE systems presented in this thesis.

B.1 Poincaré Map Algorithm

In this work, all the analyzed energy harvesting systems are subjected to har-
monic external excitations. For this reason, the procedure used to obtain the steady-
state Poincaré maps is based on the process depicted in Figure 3.2, where the time
coordinate is folded into a toroidal space that repeats itself every period, T. Figure
B.1 illustrates the algorithm, where the number of integration steps is divided in
terms of harmonic excitation characteristics as N = Nper×Ndiv. Nper is the number
of excitation periods, T, employed in the analysis, while Ndiv is the number of time
steps per excitation period. With this information, it is possible to compute the final
time of integration as tf = 2πNper/ω, where ω is the excitation frequency. Then,
the integration scheme is divided into two nested loops: the first iterating over the
number of periods, and the second iterating over the number of divisions per period.
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This way, it is possible to insert the Poincaré sections exactly at a division point
within a period, as illustrated by the red dashed lines. In these sections, the solution
point is obtained and added to the map data.

System's dynamical
response

Harmonic external 
excitation

1 step of
the period

Poincaré section
per period1 Period

Initial Conditions
Divide the number of 

integration steps in terms of 
harmonic excitation

characteristics Nper and Ndiv

Choose poincaré section
𝛴p = p ∈ [0, Ndiv − 1]

Solve System from t0 to tN 
through a numerical integrator

and extract Poincaré map 

Dynamical 
System

Loop over the number of steps per
period of excitation (Ndiv)

i th step of
the period

if i = p save point 

Loop over the number of periods of excitation (Nper)

Figure B.1: Procedure to obtain the Poincaré maps.

B.2 Lyapunov Exponents

There are many algorithms to compute Lyapunov exponents available in the lit-
erature. The majority of them monitor the perturbed trajectories through linearized
versions of the system combined with the usage of Gram-Schmidt reorthonormaliza-
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tion or QR decomposition to avoid numerical errors and ill-conditioned terms [203].
For a comparison of classic algorithms, refer to [204]. Notably, in recent years, a new

Initial Conditions Initial Perturbations for Each Direction 

Dynamical 
System

2nd Linearized 
System

1st Linearized 
System

nth Linearized 
System

Solve System from t0 to tN 
Through a Numerical Integrator 

Gram-Schmidt
Reorthonormalization

Lyapunov Exponent
Spectrum

Figure B.2: Procedure to obtain the Lyapunov exponent spectrum, where dt is the
time increment, t0 and tN = tf the initial and final time of integration, respectively.
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method was proposed by SORIANO et al. [172] that does not require the lineariza-
tion of the system to monitor the perturbed orbits. Instead, they used clones of
the actual system to perform the task. In this work, the classical method proposed
by WOLF et al. [173] is chosen due to the robustness and speed, and the general
algorithm is depicted in Figure B.2, where a base b = 2 [bits/s] is used accordingly
to [173].

B.3 Parallel Implementation of the Two-

Dimensional Diagrams

The procedures to obtain the DRDs, OPDs and LEDs presented in this work are
performed utilizing parallel computing techniques. Specifically, due to performance,
the codes were developed using C language associated with the OpenMP® API.
Figure B.3 provides a schematic representation of the algorithm. The process begins
with a mesh composed of Nx × Ny points. This mesh is then divided into equally
distributed chunks of points. Subsequently, each chunk is assigned to a different CPU
thread. Each thread executes a for loop with distinct points of the mesh. Each
iteration of the for loop computes a distinct point of the mesh. The OpenMP®

API schedule(static) command automates this entire process by assigning sets
of loop iterations to different threads to execute.

B.4 Limitations of the DRD Algorithm

The combination of Poincaré maps and Lyapunov exponents to construct a ro-
bust tool for the automatic classifying dynamical attractors of the system is pre-
sented in Chapter 3, however, every tool has its limitations.

The first limitation concerns the algorithm’s ability to classify only three of the
four possible behaviors outlined in Table 3.1.2. Specifically, it cannot accurately
identify quasiperiodic responses. Theoretically, it is conceivable to determine if a
system exhibits quasiperiodic behavior using the Lyapunov spectrum. In practice,
however, it is almost impossible to make such determinations solely based on eval-
uating the Lyapunov exponents. This challenge arises from two factors: Firstly,
numerical errors are associated with the numerical integrator used to solve the non-
linear dynamical system, as well as numerical errors associated with the procedure
to determine the exponents. Secondly, the evaluation of the Lyapunov exponent
spectrum is restricted to a finite time range, while Equation 3.9 explicitly states
that the correct value of the exponent is assessed as the limit t→ ∞. Consequently,
the values obtained by all the Lyapunov exponent algorithms are approximations
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Figure B.3: Schematic illustration of the parallel procedure to obtain the DRDs,
OPDs and LEDs for a two-dimensional parameter domain of Nx × Ny points. In
this example, a process utilizing 3 CPU threads is showcased.

of the actual values, with an associated error. While there are existing methods in
the literature to identify quasiperiodic behavior, most of them are computationally
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intensive [205, 206]. To bypass this issue, the "Many Periods" (MP) classification,
illustrated in Figure 3.9, has been incorporated. It includes all high periodic or
quasiperiodic attractors that exhibit λ1 < 0. This approach is considered a reason-
able solution within the scope and objectives of this thesis, however, it is important
to notice that attractors that exhibit λ1 > 0 and are quasiperiodic can still be
erroneously classified.

The second issue also concerns the evaluation of attractors that have the two
largest Lyapunov exponents near zero. Due to the same numerical errors, the values
and signs of the exponents can be misleading. To mitigate these problems, it is
imperative to assess the system over extended time intervals to ensure exponent
convergence.
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Figure B.4: 1T orbit exhibiting long transient chaos of a 2-DoF Duffing oscillator
[3]. Time series of (a) the first and (b) the second DoFs of the system. Steady-
state phase space and Poincaré maps of (d) the first and (e) the second DoFs. (c)
The convergence of two sets of first and second Lyapunov exponents. λ(t0) set is
evaluated starting from t = t0, and λ(trans) set is evaluated starting from t = ttrans.

The third issue pertains to the numerical convergence of the Lyapunov expo-
nents. As mentioned previously, obtaining an accurate computation of the Lyapunov
spectrum necessitates considering a substantial time range to ensure exponent con-
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vergence. In certain scenarios, especially when the system exhibits long transient
chaotic orbits, the exponents may not converge correctly. To address this challenge,
two evaluations with distinct initial times are undertaken:: one with t = t0 and the
second starting at t = ttrans. This approach yields two spectra that can be com-
pared. If λ(t0)1 > 0 and λ

(ttrans)
1 > 0, λ(t0) spectrum is selected because it has more

time to converge, and the behavior is classified as chaotic or hyperchaotic based on
the value of the other exponents of the selected spectrum. Alternatively, if λ(t0)1 > 0

and λ
(ttrans)
1 < 0, it indicates that the system is potentially undergoing a long tran-

sient chaos orbit. Consequently, λ(ttrans) spectrum is chosen, as it is not influenced
by the transient chaos’ effects on the exponent values. In this case, the behavior
is classified as periodic. Figure B.4 exemplifies this scenario using a 2-degrees-of-
freedom Duffing oscillator, as studied in [3]. This oscillator exhibits a 1T attractor
with a long transient chaos phase. When examining Subfigures B.4(a), B.4(b) and
B.4(c) one can observe the temporal evolution of some state variables and the con-
vergence behavior of the first two Lyapunov exponents. The dashed lines represent
ttrans = 0.75tf . The transient chaos phase concludes just before ttrans and subsequent
to that, both λ(t0)1 and λ(t0)2 begin to decrease. At tf it is still decreasing, indicating
that the convergence of the λ(t0) exponents does not occur. In contrast, the second
set of exponents originating at t = ttrans, denoted as λ(trans), is not influenced by
the transient chaos effects and converges to a negative value at a faster rate than
λ(t0). The final values can be observed in the inset zoom in Figure B.4(c). It is
important to emphasize that this method is effective primarily when the transient
chaos concludes before t = ttrans. This underscores the importance of selecting an
appropriate ttrans value that minimizes the chances of encountering this issue, in
addition to ensuring an adequate number of points to evaluate the Poincaré Map
correctly.

The last limitation concerns the scenarios in which the system remains in a tran-
sient state within the selected simulation time range. In such cases, the classification
of attractors can be misleading or erroneous. Using the 2-DoF oscillator studied in
[3] as an example, Figure B.5 illustrates a misleading scenario where the system
may still be converging to a 1T orbit, as evident from the star-shaped form in the
Poincaré map. However, due to the values of the Lyapunov exponents (λ1 < 0 and
λ2 < 0) and the differences in Poincaré map values, the algorithm would classify it
as "Many Periods" (MP), which is not incorrect within the given time range, but the
system has not reached a steady state yet. Whether this classification is problematic
or not depends on the objectives of the analysis. Within the scope of this thesis,
such a classification is desired as it characterizes the system within the chosen time
range.

Conversely, Figure B.6 illustrates a scenario that combines the misclassification
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Figure B.5: MP attractor of the 2-DoF oscillator analyzed in [3]. Time series of (a)
the first and (b) the second DoFs of the system. Steady-state phase subspace and
Poincaré maps of (d) the first and (e) the second DoFs. (c) The convergence of two
sets of the first and second Lyapunov exponents. λ(t0) set is evaluated starting from
t = t0, and λ(trans) set is evaluated starting from t = ttrans.

associated with long transients and the first issue concerning quasiperiodic attrac-
tors. When examining the Poincaré maps, they suggest a quasiperiodic-like attrac-
tor, while the Lyapunov exponents indicate a chaotic response, with λ1 > 0. The
time series also provides evidence of the system still being in the transient regime.
By evaluating only the information available within this time range, it is challenging
to classify the attractor accurately. This case exemplifies a classic instance where
the classification of the DRD algorithm fails (in this case, it would classify it as
chaotic).

Despite the limitations highlighted in this section, all algorithm tests have
demonstrated a high degree of effectiveness in mapping the dynamics of nonlin-
ear systems. Through the combination of these approaches, the vast majority of
dynamical attractors are properly classified, with the outliers being samples that
are still converging to a stable orbit at the final time of integration. In this the-
sis, the analysis was conducted within the context of these limitations. However,
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Figure B.6: Wrongly classified quasiperiodic-like attractor of the 2-DoF oscillator
analyzed in [3]. Time series (a) the first and (b) the second DoFs of the system.
Steady-state phase subspace and Poincaré maps of (d) the first and (e) the second
DoFs. (c) The convergence of two sets of the first and second Lyapunov exponents.
λ(t0) set is evaluated starting from t = t0, and λ(trans) set is evaluated starting from
t = ttrans

enhancements to the algorithm are planned for future work.

B.5 OCD Algorithm

The procedure to obtain an Occurrence Diagram (OCD) starts by reading the
n outputs of any diagram and creating an empty OCD dataset filled with zeros,
matching the length of the original datasets. It then iterates over each dataset,
evaluating all values of a system characteristic (e.g., output power, attractor). If the
values exhibit the relevant feature (RF) of interest, one is added to the corresponding
cell position in the OCD dataset.
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Load n diagram 
datasets

Create an empty
OCD dataset filled

with zeros
OCD construction

Loop over all dataset values
(i from 0 to dataset length)

i th dataset 
value (v)

if v ∈RF v += 1 

Loop over n diagram datasets

Define relevant feature of interest (RF)

Write OCD dataset
into a file

Figure B.7: Schematic illustration of the procedure to obtain the OCDs.

B.6 PCD Algorithm

The procedure to obtain a Performance Comparison Diagram (PCD) starts by
reading the OPD datasets from both the reference harvester and the studied har-
vester. Next, an empty PCD dataset filled with zeros is created, matching the length
of the original datasets. The procedure then iterates over the cells of both OPD
datasets, retrieves the corresponding values, and applies Equation 3.11 to calculate
the result, which is written in the corresponding cell of the PCD dataset.

Load reference 
harvester and studied 

harvester OPD datasets

Create an empty
PCD dataset filled

with zeros
PCD construction

Apply ∆P(%) = 100 × (Ps −Pr)/Pr

Loop over OPD datasets n values

Write PCD dataset
into a file

Figure B.8: Schematic illustration of the parallel procedure to obtain the PCDs
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B.7 DPD Algorithm for the MHEH

The procedure to obtain a Dynamical Pattern Diagram (DPD) specific for the
MHEH starts by reading the full dataset provided by the diagram construction
procedure. This dataset contains information such as the attractor classification,
the minimum, maximum, and RMS values of all generalized coordinates, and the
output power of each transducer, among others. Then, an empty dataset is created,

Read the diagram
datasets

Create an empty
DPD dataset filled

with zeros

Construct the 
DPD for the MHEH

Save DPD data into an
output file

if = if ≠ if = if ≠

Check the
magnitudes of min 

and max angles

Check the
magnitudes of min 

and max angles

if CH
of HC

Compare the sign 
of min and max 
angular velocities

Compare the sign 
of min and max 
angular velocities

Classify
as RO 

Classify
as IO 

if Periodic
or MP

Read attractor
classification

Current
data point

Loop over diagram data

Classify
as RR 

Classify
as RM 

Classify
as IR 

Classify
as IM 

if −𝜋 and 𝜋
if between
−𝜋 and 𝜋

if −𝜋 and 𝜋
if between
−𝜋 and 𝜋

Figure B.9: Schematic illustration of the procedure to obtain the DPDs for the
MHEH.

matching the length of the original diagram dataset. The procedure then iterates
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over the cells of the original dataset comparing certain features of each point in the
analyzed parameter space. Finally, the result is written into an output file containing
the updated dataset. The full process is depicted in Figure B.9.

B.8 Stability Analysis Algorithms for the CMEH

The process for determining the stability states of the CMEH is outlined in
Figure B.10. Initially, the restitution parameters are chosen. Subsequently, the
non-forced system’s solution is derived to identify the equilibrium positions. The

Restitution parameters
(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝜌, 𝛺s)

Non-forced dynamical
system (𝛾 = 𝛺 = 0)

Find solution
(equilibrium points) with 

"SymPy's nonlinsolve"

Find Nature
of Stability

Write results into
an output file

Potential energy
function

Array of generalized
coordinates values

Unstable Point is not
hyperbolic

(failed)

Classify as
stable point

Classify as
unstable saddle

point

Classify as
unstable source

point

if 
Re(𝜇j) > 0,

∃j

if only one 
Re(𝜇j) > 0

if 2 or more 
Re(𝜇j) > 0

if 
Re(𝜇j) < 0,

∀j

Find eigenvalues,
𝜇j of J

Current
solution

Jacobian
matrix, J

Loop over all solutions (sets of equilibrium points)

if 
Re(𝜇j) = 0,

∃j

Figure B.10: Schematic illustration of the procedure to obtain the stability states
of the CMEH.

characteristics of these equilibrium points are then examined. Each solution of the
non-forced system is incorporated into the Jacobian matrix, J, from which eigenval-
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ues are computed. Utilizing the criteria elucidated in Section 3.1.4, the stability of
each equilibrium point is ascertained. Additionally, the system’s potential energy is
plotted based on a 2D array of position values.

B.9 Basins of Attraction Algorithm

The procedure to obtain the basins of attraction of the fixed points employs a
parallel computing scheme using the OpenMP® API, similar to the one used for
constructing the diagrams. Figure B.11 details this process. It begins by defining a
variable, npoints, with an initial value of zero. An empty 2D array, P, is created,
where the number of columns corresponds to the number of generalized coordinates
of the system, plus an additional column for the label. A mesh of Nx ×Ny distinct
initial conditions is then generated.

Simulation and System
Parameters

Non-Forced
Dynamical System

Construction of the
Basins of Attraction

Store the new V in the
new position within P and
assign new label = npoints

npoints += 1

Increase the
size of P by 1 if V ∉ P

Check solution
values, V, at tf 

if V ∈ P

Classify label as
corresponding
number in P

Classify label
as npoints

Integration
method

Loop over mesh points with varying
initial conditions

Create an empty array,
P, to store and assign

labels to equilibrium points

npoints = 0 labelV

Mesh of Nx×Ny
initial conditions

CPU 
Thread 0

CPU 
Thread 1

CPU 
Thread 2

Assign respective
color

...

Figure B.11: Schematic illustration of the procedure to obtain the basins of attrac-
tion of the fixed points.

A for loop iterates over the entire mesh, dividing the iterations into equally
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distributed chunks. Each chunk is automatically assigned to a different CPU thread
using the schedule(static) command of the OpenMP® API. Within each iteration
of the loop, the non-forced system’s solution is determined using an integration
method, and the final solution points, V, at t = tf , are evaluated. Initially, since
the array P is empty, the solution is found, assigned to V, and labeled as 1. In
subsequent iterations, the solution is checked against P. If found, it is classified
with the corresponding label from P. If V is not found in P, the number of rows in
P is increased by 1, and the new V is stored in the new row, and labeled as npoints
+ 1.

In these parallelized tasks, it is crucial to use the critical directive of the
OpenMP® API before modifying the P array. The critical directive ensures that
a section of code is executed by only one thread at a time, preventing race conditions
between processors that could lead to incorrect classifications in the algorithm.

192



Appendix C

Normalization of Electromechanical
Equations

The objective of this Chapter is to elucidate the process of normalization of
the energy harvesting systems analyzed in this work. The following sections show
in detail this process for the compact multistable energy harvester and the hybrid
multidirectional energy harvester. In both cases, a dimensionless time, τ = ω0t is
used, where ω0 is a reference frequency that is unique for each system.

C.1 Normalization of the Compact Multistable En-

ergy Harvester

The four electromechanical equations of the system are written below:

m1z̈1 + c1ż1 − c2 (ż2 − ż1) + (k1 + a1) z1 + b1z
3
1 − k2 (z2 − z1)

− θ1v1 + θ2v2 = −m1z̈b;
(C.1)

m2z̈2 + c2 (ż2 − ż1) + a2z2 + b2z
3
2 + k2 (z2 − z1)− θ2v2 = −m2z̈b; (C.2)

Cp1v̇1 +
v1
R1

+ θ1ż1 = 0; (C.3)

Cp2v̇2 +
v2
R2

+ θ2 (ż2 − ż1) = 0. (C.4)

Considering the reference frequency of ω0 = ω1 =
√
k1/m1, a reference length,

L, and a reference voltage, V , it is possible to write the normalized generalized
coordinates of the system as:

x̄i(τ) =
xi(t)

L
, v̄i(τ) =

vi(t)

V
, (i = 1, 2). (C.5)
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Using the chain rule, the derivatives of the normalized coordinates are found:

˙̄q(τ) =
dq̄(τ)

dτ
=
dq̄(τ)

dt

dt

dτ
=
q̇(t)

ω1Q
, (C.6)

¨̄q(τ) =
d ˙̄q(τ)

dτ
=
d ˙̄q(τ)

dt

dt

dτ
=
q̈(t)

ω2
1Q

, (C.7)

where q = (x1, x2, v1, v2) and Q = (L, V ) are dummy symbols representing the
generalized coordinates and their respective reference measurements.

The relations shown in Equations C.5, C.6, and C.7 are, then, substituted into
the system of electromechanical equations:

m1ω
2
1L¨̄z1 + c1ω1L ˙̄z1 − c2ω1L ( ˙̄z2 − ˙̄z1) + (k1 + a1)Lz̄1 + b1L

3z̄31

− k2L (z̄2 − z̄1)− θ1V v̄1 + θ2V v̄2 = −m1ω
2
1L¨̄zb;

(C.8)

m2ω
2
1L¨̄z2 + c2ω1L ( ˙̄z2 − ˙̄z1) + a2Lz̄2 + b2L

3z̄32 + k2L (z̄2 − z̄1)

− θ2V v̄2 = −m2ω
2
1L¨̄zb;

(C.9)

Cp1ω1V ˙̄v1 +
V

R1

v̄1 + θ1ω1L ˙̄z1 = 0; (C.10)

Cp2ω1V ˙̄v2 +
V

R2

v̄2 + θ2ω1L ( ˙̄z2 − ˙̄z1) = 0. (C.11)

A division process is performed in each side of each equation: Equation C.8 is
divided by m1ω

2
1L, while Equation C.9 is divided by m2ω

2
1L. Equations C.10 and

C.11 are divided by Cp1ω1V and Cp2ω1V , respectively, resulting in the following
normalized equations:

¨̄z1 +
c1

ω1m1

˙̄z1 −
c2

ω1m1

( ˙̄z2 − ˙̄z1) +

(
k1 + a1
m1ω2

1

)
z̄1 +

b1L
2

m1ω2
1

z̄31

− k2
ω2
1m1

(z̄2 − z̄1)−
θ1V

m1ω2
1L
v̄1 +

θ2V

m1ω2
1L
v̄2 = −¨̄zb;

(C.12)

¨̄z2 +
c2

m2ω1

( ˙̄z2 − ˙̄z1) +
a2

m2ω2
1

z̄2 +
b2L

2

m2ω2
1

z̄32 +
k2

m2ω2
1

(z̄2 − z̄1)

− θ2V

m2ω2
1L
v̄2 = −¨̄zb;

(C.13)

˙̄v1 +
1

Cp1ω1R1

v̄1 +
θ1L

Cp1V
˙̄z1 = 0; (C.14)

˙̄v2 +
1

Cp2ω1R2

v̄2 +
θ2L

Cp2V
( ˙̄z2 − ˙̄z1) = 0. (C.15)

By understanding that the linearized natural frequency of each mechanical
degree-of-freedom of the system is defined by ωi =

√
ki/mi, i = (1, 2), it is pos-
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sible to write the final version of the electromechanical system of equations as:

¨̄z1 + 2ζ1 ˙̄z1 − 2ζ2 ( ˙̄z2 − ˙̄z1) + (1 + α1) z̄1 + β1z̄
3
1 − ρΩ2

s (z̄2 − z̄1)

− χ1v̄1 + χ2v̄2 = −¨̄zb;
(C.16)

ρ¨̄z2 + 2ζ2 ( ˙̄z2 − ˙̄z1) + α2z̄2 + β2z̄
3
2 + ρΩ2

s (z̄2 − z̄1)− χ2v̄2 = −¨̄zb; (C.17)

˙̄v1 + φ1v̄1 + κ1 ˙̄z1 = 0; (C.18)

˙̄v2 + φ2v̄2 + κ2 ( ˙̄z2 − ˙̄z1) = 0. (C.19)

where the following new normalized parameters are defined:

ρ =
m2

m1

; Ωs =
ω2

ω1

; ζi =
ci

2m1ω1

; αi =
ai

m1ω2
1

; βi =
biL

2

m1ω2
1

χi =
θiV

m1ω2
1L

; κi =
θiL

CpiV
; φi =

1

CpiRiω1

; i = (1, 2).

(C.20)

In Chapter 5, the analyses were conducted considering a harmonic base excitation
of the type zb(t) = Ab sin (ωt). By understanding that this type of excitation is a
displacement, a similar relation utilized to normalize the generalized coordinates
(Eq. C.5) can be used, resulting in the following relation:

ω2
1L¨̄zb(τ) = −Abω

2 sin

(
ω
τ

ω1

)
. (C.21)

Organizing the terms in Equation C.21, the final version of the normalized base
excitation term arises:

¨̄zb(τ) = −γΩ2 sin (Ωτ), (C.22)

where the new terms, γ and Ω, are defined by the following relations:

γ =
Ab

L
; Ω =

ω

ω1

. (C.23)

Another important point is the normalization of the instantaneous output powers
of the system, Pinsti , i = (1, 2). To perform the normalization consider the substitu-
tion of the relations presented in Equation C.5 in the equations of the instantaneous
output power (Eq. 5.18):

Pinsti(τ) =
V 2

Ri

v̄i(τ)
2, i = (1, 2). (C.24)

By dividing both sides by Cpiω1V
2, i = (1, 2), the power dimension [J/s] vanishes,

resulting in:
P̄insti(τ) = φiv̄i(τ)

2, i = (1, 2). (C.25)
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where
P̄insti(τ) =

Pinsti(t)

Cpiω1V 2
, i = (1, 2). (C.26)

C.2 Normalization of the Multidirectional Hybrid

Energy Harvester

The five electromechanical equations of the system are written below:

(ms +mp) ẍ+ cxẋ+ kxx+mpLp

[
ϕ̈ cos (ϕ)− ϕ̇2 sin (ϕ)

]
= − (ms +mp) ẍb; (C.27)

(ms +mp) z̈ + cz ż + (kz + kpz) z − θpzv −mpLp

[
ϕ̈ sin (ϕ) + ϕ̇2 cos (ϕ)

]
=

− (ms +mp) z̈b;
(C.28)

mpL
2
pϕ̈+ (cem + cpLp)ϕ̇− θemI +mpLp [ẍ cos (ϕ) + (g − z̈) sin (ϕ)] =

mpLp [z̈b sin (ϕ)− ẍb cos (ϕ)] ;
(C.29)

Cpzv̇ +
v

Rpz

+ θpz ż = 0; (C.30)

Lemİ +RemI + θemϕ̇ = 0. (C.31)

Considering the reference frequency of ω0 = ωz =
√

(kz + kpz) /ms, a reference
length, L, a reference voltage V , and a reference current I, it is possible to write
the normalized generalized coordinates of the system as:

x̄(τ) =
x(t)

L
, z̄(τ) =

z(t)

L
, ϕ̄(τ) = ϕ(t), v̄(τ) =

v(t)

V
, Ī(τ) =

I(t)

I
. (C.32)

Using the chain rule, as before, the derivatives of the normalized coordinates are
found:

˙̄q(τ) =
dq̄(τ)

dτ
=
dq̄(τ)

dt

dt

dτ
=
q̇(t)

ω1Q
, (C.33)

¨̄q(τ) =
d ˙̄q(τ)

dτ
=
d ˙̄q(τ)

dt

dt

dτ
=
q̈(t)

ω2
1Q

, (C.34)

where q = (x, z, ϕ, v, I) and Q = (L, 1, V,I) are dummy symbols representing the
generalized coordinates and its respective reference measurements.

The relations shown in Equations C.32, C.33, and C.34 are, then, substituted
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into the system of electromechanical equations:

(ms +mp)ω
2
zL¨̄x+ cxωzL ˙̄x+ kxLx̄+mpLpω

2
z

[
¨̄ϕ cos (ϕ̄)− ˙̄ϕ2 sin (ϕ̄)

]
=

− (ms +mp)ω
2
zL¨̄xb;

(C.35)

(ms +mp)ω
2
zL¨̄z+czωzL ˙̄z + (kz + kpz)Lz̄ − θpzV v̄

−mpLpω
2
z

[
¨̄ϕ sin (ϕ̄) + ˙̄ϕ2 cos (ϕ̄)

]
= − (ms +mp)ω

2
zL¨̄zb;

(C.36)

mpL
2
pω

2
z
¨̄ϕ+ (cem + cpLp)ωz

˙̄ϕ+mpLpω
2
zL

[
¨̄x cos (ϕ̄) +

(
g

ω2
zL

− ¨̄z

)
sin (ϕ̄)

]
− θemIĪ = mpLpω

2
zL

[
¨̄zb sin (ϕ̄)− ¨̄xb cos (ϕ̄)

]
;

(C.37)

CpzV ωz ˙̄v +
V

Rpz

v̄ + θpzωzL ˙̄z = 0; (C.38)

LemωzI
˙̄I +RemIĪ + θemωz

˙̄ϕ = 0; (C.39)

A division process is performed in each side of each equation: Both Equations
C.35 and C.36 are divided by msω

2
zL, while Equation C.37 is divided by mpL

2
pω

2
z .

Equations C.38 and C.39 are divided by CpzV ωz and LemωzI, respectively, resulting
in the following normalized equations:(

1 +
mp

ms

)
¨̄x+

cx
msωz

˙̄x+
kx

msω2
z

x̄+
mpLp

msL

[
¨̄ϕ cos (ϕ̄)− ˙̄ϕ2 sin (ϕ̄)

]
=

−
(
1 +

mp

ms

)
¨̄xb;

(C.40)

(
1 +

mp

ms

)
¨̄z +

cz
msωz

˙̄z +
(kz + kpz)

msω2
z

z̄ − θpzV

msω2
zL
v̄

− mpLp

msL

[
¨̄ϕ sin (ϕ̄) + ˙̄ϕ2 cos (ϕ̄)

]
= −

(
1 +

mp

ms

)
¨̄zb;

(C.41)

¨̄ϕ+
(cem + cpLp)

mpL2
pωz

˙̄ϕ− θemI

mpL2
pω

2
z

Ī +
L

Lp

[
¨̄x cos (ϕ̄) +

(
g

ω2
zL

− ¨̄z

)
sin (ϕ̄)

]
=

L

Lp

[
¨̄zb sin (ϕ̄)− ¨̄xb cos (ϕ̄)

]
;

(C.42)

˙̄v +
1

CpzωzRpz

v̄ +
θpzL

CpzV
˙̄z = 0; (C.43)

˙̄I +
Rem

Lemωz

Ī +
θem
LemI

˙̄ϕ = 0; (C.44)

By understanding that the linearized natural frequencies of each mechanical
degree-of-freedom are defined by ωz =

√
kz + kpz/ms, ωx =

√
kx/ms, and ωϕ =√

g/Lp, it is possible to write the final version of the electromechanical system of
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equations as:

(1 + ρ) ¨̄x+ 2ζx ˙̄x+ Ω2
sx̄+ ρℓ

[
¨̄ϕ cos (ϕ̄)− ˙̄ϕ2 sin (ϕ̄)

]
= −(1 + ρ)¨̄xb (C.45)

(1 + ρ) ¨̄z + 2ζz ˙̄z + z̄ − χpzv̄ − ρℓ
[
¨̄ϕ sin (ϕ̄) + ˙̄ϕ2 cos (ϕ̄)

]
= −(1 + ρ)¨̄zb (C.46)

¨̄ϕ+ 2ζϕ
˙̄ϕ+ Ω2

ϕ sin (ϕ̄) +
1

ℓ

[
¨̄x cos (ϕ̄)− ¨̄z sin (ϕ̄)

]
− χemĪ =

1

ℓ

[
¨̄zb sin (ϕ̄)− ¨̄xb cos (ϕ̄)

] (C.47)

˙̄v +
v̄

φpz

+ κpz ˙̄z = 0 (C.48)

˙̄I + φemĪ + κem
˙̄ϕ = 0 (C.49)

where the following new normalized parameters are defined:

ρ =
mp

ms

; Ωj =
ωj

ωz

; ζi =
ci

2msωz

; ζϕ =
cem + cpLp

2mpL2
pωz

; ℓ =
Lp

L

χpz =
θpzV

msω2
zL

; κpz =
θpzL

CpzV
; φpz = CpzRpzωz; i = (x, z);

χem =
θemI

mpL2
pω

2
z

; κem =
θem
LemI

; φem =
Rem

Lemωz

; j = (x, ϕ);

(C.50)

The analyses of the MHEH were conducted considering a harmonic base excita-
tion that has two components, rb = xbêx+zbêz = −A sin (ωt) [sin (µ)êx + cos (µ)êz].
By understanding that this type of excitation is a displacement, a similar relation
utilized to normalize the generalized coordinates (Eq. C.32) can be used, resulting
in the following relation:

ω2
zL (ẍbêx + z̈bêz) = −Abω

2 sin

(
ω
τ

ωz

)
[sin (µ)êx + cos (µ)êz] . (C.51)

Organizing the terms in Equation C.51, the final version of the normalized base
excitation term arises:

ẍbêx + z̈bêz = −γΩ2 sin (Ωτ) [sin (µ̄)êx + cos (µ̄)êz] , (C.52)

where the new terms, γ, Ω, and µ̄, are defined by the following relations:

γ =
Ab

L
; Ω =

ω

ωz

; µ̄ = µ. (C.53)

The normalization of the instantaneous output powers of the system, Ppz and
Pem, can be achieved by substituting the relations presented in Equation C.32 in
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equation of the instantaneous output power (the two terms in Eq. 6.25, separately).

Ppz(τ) =
V 2

Rpz

v̄(τ)2, (C.54)

Pem(τ) = RemI
2Ī(τ)2. (C.55)

By dividing both sides of Equation C.54 by CpzωzV
2, and both sides of Equation

C.55 by LemωzI
2, the power dimensions [J/s] vanish, resulting in:

P̄pz(τ) =
v̄(τ)2

φpz

, (C.56)

P̄em(τ) = φemĪ(τ)
2, (C.57)

where

P̄pz(τ) =
Ppz(t)

CpzωzV 2
, (C.58)

P̄em(τ) =
Pem(t)

LemωzI2
. (C.59)
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