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Abstract
Nature provides abundant ambient mechanical energy in the form of vibration, sound, wave, wind, and biomechanical 
energy, which can be harvested to power electronic systems. Smart materials-based mechanical energy harvesting systems 
have attracted increasing attention over the past two decades due to their advantageous characteristics such as high power 
density, simple design, and scalability. Nevertheless, the design of compact and high-performing systems remains a challenge. 
This work deals with the analysis of a compact multistable dual-beam nonlinear energy harvester that can be configured for 
different stability layouts. By using a nonlinear dynamics analysis framework and suitable tools, a qualitative performance 
characterization of the harvester for each stability configuration is conducted. Results show that multistable characteristics 
associated with a softer inner beam characteristic and higher excitation levels are related to complex phenomena and can 
greatly enhance performance.

Keywords Energy harvesting · Smart materials · Nonlinear dynamics · Chaos · Compact structures · Multistability · 
Multiple DoF structures

1 Introduction

The increasing rate of development in contemporary society 
is causing an ecological imbalance in nature. The popula-
tion growth and the technological advance associated with 
the increasing need for natural resources is expanding the 
society’s energy demand and creating energy bottlenecks that 
need to be overcome. In this regard, the constant and rapidly 
evolution of electronic devices is enabling the reduction of 
their power consumption [35], however causing an increase 
in the production and propagation of e-waste due to the dis-
posal of old hardware, including batteries. This scenario is 
pointing towards a critical planetary threshold. If crossed, it 

could irreversibly alter the environment as known [25]. This 
emphasizes the need to develop technology, to implement 
processes, and to change lifestyle having sustainability and 
renewability as the main philosophical pillars as a society.

This context has encouraged a surge of initiatives, 
research endeavors, and development efforts to shift away 
from the old paradigm and develop renewable and sustain-
able approaches that can ensure the continued reliability 
of our technology and processes [11]. In this regard, the 
harnessing of available environmental mechanical energy 
as vibration, wind, wave, sound, and biomechanical energy 
have become attractive as an alternative, sustainable and 
renewable power supply to completely replace traditional 
batteries or, at least, increase their lifespan [21].

The operating principle of the mechanical energy harvest-
ers relies on transducer mechanisms that convert available 
mechanical energy into useful electrical energy. Electromag-
netic induction [27], triboelectric structures [34], and smart 
materials such as piezoelectric ceramics [28], piezoelectric 
polymers [26], and magnetostrictive alloys [7] are the most 
conventional methods found in the literature. Hybrid strate-
gies are also being employed to enhance the overall per-
formance of mechanical energy harvesters, overcoming the 
limitations of the individual transduction methods [1, 12].
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The structural design configuration is another essential 
point to enhance energy harvesting capacity. In this regard, 
the cantilever structure, which employs slender beams as the 
main structural component, is a widely recognized, well docu-
mented, modeled and validated design for harvesters [10, 14, 
15]. Nevertheless, this design suffers from a critical limitation, 
presenting a lack of efficiency when operating at frequencies 
that deviate from its natural frequency. Under these conditions, 
the deflection of the beam decreases, resulting in a low per-
formance, hindering its application in practical circumstances.

Mechanical modulations have been proposed to improve the 
performance of the classical beam harvester. One interesting 
approach is the incorporation of degrees-of-freedom (DoF) 
to create a multimodal design that can operate efficiently in 
broadband spectrum [19]. From this perspective, Wu et al. [29] 
proposed a design comprising an outer and an inner beam. This 
design created a larger operating region, rendering the 2-DoF 
design a very compact construction with enhanced perfor-
mance. Novel designs with geometry modifications have also 
demonstrated improved performance. Caetano and Savi [2] 
proposed a pizza-shaped system that exploited multiple DoF 
to achieve a broadband device, and later proposed a star-shaped 
device with coupled inertial masses that resulted in a broadband 
multidirectional energy harvester [3]. Similarly, Zhou et al. [31] 
introduced an arc-shaped geometry segment to the cantilever 
design, significantly enhancing its performance compared to 
the conventional design.

Nonlinear behavior is another essential point to be exploited 
to pursue more efficient designs. Countless nonlinear modula-
tions have been proposed and continue to be explored [36]. 
These modifications have been found to significantly improve 
the performance of energy harvesters, especially in terms of 
broadband performance, making them attractive options for 
general applications. For example, the inclusion of magnetic 
interactions or mechanical buckling can create a multistabil-
ity that creates additional stable conditions by inducing one 
or more regions of instability within the system. Multistable 
systems are effective as they have the potential to increase 
the deflections, enhancing its energy harvesting capabilities. 
Researchers have extensively investigated the capacity of 
multistability in one degree-of-freedom systems by exploring 
bistability [4, 18], tristability [16], tetrastability [33], and pen-
tastability [32]. One of the main characteristic of multistable 
systems is the presence of a potential energy barrier that can 
reduce performance when low levels of input energy are avail-
able. Nonetheless, if the barriers are overcome, these systems 
can enhance both output power and bandwidth when compared 
to the classical linear systems [13]. Generally, evidence points 
that increasing the number of stable positions can shorten these 
energetic barriers and increase performance in low level excita-
tion conditions, by the cost of increasing dynamical complexity 
[17].

Since the pioneer concepts of the usage of magnets [8, 24] 
and buckled structures [18, 23] to enhance the bandwidth of 
the classical linear harvesters, researchers have proposed and 
analyzed new forms of multistable systems, ranging from trista-
ble to pentastable and beyond. Nevertheless, there is a lack of 
standard forms of comparison among the proposed systems and 
classical systems, coupled with biased reporting of results has 
made it difficult to differentiate good proposals from bad ones. 
Nonlinear dynamics perspective is an interesting approach to 
evaluate the energy harvesting capacity by considering different 
multistable aspects. On this basis, an objective and comprehen-
sive evaluation of multistable systems can be performed, using 
the energy harvesting capacity as the main criterion.

This paper deals with a novel  energy harvester that com-
bines compactness, multistability, and multi-degree-of-free-
doms by using an dual-beam structure, a pair of magnetic 
interactions, and two piezoelectric transducers attached to the 
main structure. This model was previously discussed in Costa 
and Savi [5] and is inspired in the original model proposed by 
Wu et al. [30] that considers a bistable system. This structure 
allows the analysis of different aspects of multistability, which 
is performed by investigating the nonlinear dynamics and per-
formance of the energy harvesting system. This article expands 
a previous work by examining the qualitative effects of differ-
ent magnetic configurations  that define distinct stability states 
associated with magnetic setups [5]. Based on the excitation 
levels, the performance characteristics of each configuration 
are elucidated and compared, defining the best configuration 
for various operational scenarios, establishing a proper analysis 
of multistable aspects.

2  Design concept and theoretical model

A dual-beam compact energy harvesting system design is 
proposed based on the classical cantilever beam structure, 
presenting an inner–outer beam structure and nonlinear 
modulation based on magnetic interactions. This compact 
design maximizes the available space for high strain rates. 
Basically, an inner beam is incorporated into the outer 
beam, and each one of them has magnetic interactions and 
a piezoelectric transducer. This energy harvesting system 
is a compact multistable energy harvester of the same size 
as the conventional bistable energy harvester, but with 
potentially better performance capabilities as showed by 
Costa and Savi [5]. Figure 1 illustrates the design con-
cept compared to the conventional bistable harvester. This 
design is more space-efficient and can offer better perfor-
mance than the conventional version.
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2.1  Reduced order model

The proposed energy harvester is represented by a 2-degrees-
of-freedom multistable reduced order prototype showed in 
Fig. 2. This archetype encompasses the main features of the 
energy harvester. In the prototype, the subscript i = 1, 2 rep-
resents the properties associated with each degree-of-free-
dom, such as the mass, mi , the equivalent structural stiffness, 
ki , and the equivalent dissipation coefficient ci . Moreover, 
piezoelectric patches are attached to the structure, which can 
be modeled by the electromechanical coupling coefficient, 
�i , an equivalent internal capacitance, Cpi , and an internal 
resistance, Rpi.

The piezoelectric elements are connected to simple resis-
tive circuits with load resistances, Rli , resulting in output 
voltages, vi(t) . The equivalent electrical resistance of each 
circuit, Ri , is determined by the internal resistance of the 

piezoelectric element and the load resistance connected in 
parallel, so that Ri = RliRpi∕

(
Rli + Rpi

)
 . The equivalent cir-

cuit of each piezoelectric element is presented in Fig. 2b. 
The system is excited by a base motion with amplitude Ab 
and frequency � , represented by zb = Ab sin�t . Further-
more, the displacement of each mass is represented by 
zi(t) and the respective positive directions related to the 
real harvester are represented in Fig. 2c, that is, when z1 is 
positive, the motion of the outer beam is directed upward, 
while when z2 is positive, the motion of the inner beam pre-
sents an downward direction. Also, the effects of gravity are 
neglected.

In its simplest manifestation, the constitutive relationship 
governing the magnetic interactions can be approximated by 
a polynomial restitution force function, fm(x) = dUm(x)∕dx , 
where Um(x) is the potential energy associated with the res-
titution force [6, 9, 17]. For a 1DoF symmetric multistable 

Fig. 1  Conceptual representation of the dual-beam nonlinear energy harvester, illustrating its compact and space-efficient design, which is com-
parable in size to the traditional bistable energy harvester

Fig. 2  Lumped model representing a the compact multistable energy 
harvester structure, b the equivalent electric circuit composed by the 
piezoelectric element attached to a resistance, and c the respective 

positive z directions for each DoF of the reduced order model related 
to the beam structure



 Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2024) 46:212   212  Page 4 of 24

system with N + 1 stable positions, these relationships can 
be expressed as follows:

Equations  (1) and (2) provide a generalized representa-
tion of fm(z) and Um(z) , both of which require the inclu-
sion of constant coefficients as essential input parameters 
�i , i = (1,⋯ ,N) . These input parameters represent the effect 
of the magnetic interactions and can be estimated by fitting 
the polynomial to experimental data [20]. In this regard, 
Table 1 provides a small compilation of common polynomial 
functions employed to represent distinct symmetric stability 
conditions within single-degree-of-freedom systems.

It is worth noting that these functions are for the magnetic 
interactions alone. The interplay between the equivalent 
structure’s restitution force, denoted as fs(z) , and the mag-
netic restitution force can have a significant impact on the 
system’s stability condition. In the case of a single-degree-
of-freedom system, this influence can alter the signal of the 
first term related to z1 . For example, for a bistable system 
(N = 1) , the resulting restitution force can be expressed as 
follows:

The bistability is associated with a positive coefficient pre-
ceding z, i.e., (�1 − k) > 0 . In systems with multiple degrees 
of freedom, these interactions become significantly more 
complex.

Within the context of the proposed system, one can apply 
this generalization in each degree-of-freedom separately. For 
a set with two magnets, a maximum of two stable equilib-
ria arises at each DoF, implying that N = 1 should be used, 
resulting in Duffing-type restitution forces, and its respective 
potential energy functions of the form:

(1)fm(z) =

N∑
j=0

(−1)1+j+N�j+1z
2j+1,

(2)

Um(z) = −

x

∫
0

fm(z)dz = −
1

2

N∑
j=0

(−1)1+j+N
1

j + 1
�j+1z

2(j+1).

(3)
f (z) = fm(z) + fs(z) = �1z − �2z

3 − kz = (�1 − k)z − �2z
3.

where the coefficients �1 = a and �2 = b , for better 
readability.

Under these assumptions, the determination of energy 
quantities are performed and the electromechanical equa-
tions are determined as follows1:

To perform a qualitative analysis of these type of systems, 
a normalization approach is carried out by considering a 
reference length, L, and a reference voltage, V, resulting in 
the dimensionless electromechanical equations given by:

(4)fmi
(zi) = −aizi(t) − bizi(t)

3, i = 1, 2;

(5)Um(z1, z2) =

2∑
i=1

1

2
aizi(t)

2 +
1

4
bizi(t)

4,

(6)
m1z̈1 + c1ż1 − c2

(
ż2 − ż1

)
+ (k1 + a1)z1 + b1z

3
1

− k2
(
z2 − z1

)
− 𝜃1v1 + 𝜃2v2 = −m1z̈b,

(7)
m2z̈2 + c2

(
ż2 − ż1

)
+ a2z2 + b2z

3
2

+ k2
(
z2 − z1

)
− 𝜃2v2 = −m2z̈b,

(8)Cp1v̇1 +
v1

R1

+ 𝜃1ż1 = 0,

(9)Cp2v̇2 +
v2

R2

+ 𝜃2
(
ż2 − ż1

)
= 0.

(10)
̈̄z1 + 2𝜁1 ̇̄z1 − 2𝜁2

(
̇̄z2 − ̇̄z1

)
+
(
1 + 𝛼1

)
z̄1 + 𝛽1z̄

3
1

− 𝜌Ω2
s

(
z̄2 − z̄1

)
− 𝜒1v̄1 + 𝜒2v̄2 = − ̈̄zb,

(11)
𝜌̈̄z2 + 2𝜁2

(
̇̄z2 − ̇̄z1

)
+ 𝛼2z̄2 + 𝛽2z̄

3
2
+ 𝜌Ω2

s

(
z̄2 − z̄1

)
− 𝜒2v̄2 = − ̈̄zb,

(12)̇̄v1 + 𝜑1v̄1 + 𝜅1 ̇̄z1 = 0,

Table 1  Common polynomial 
functions used to represent 
different symmetric stability 
conditions in a single-degree-
of-freedom system

Stability Magnetic restitution force, fm(z) Magnetic potential energy, Um(z)

1DoF bistable �1z − �2z
3

−
1

2
�1z

2 +
1

4
�2z

4

1DoF tristable −�1z + �2z
3 − �3z

5 1

2
�1z

2 −
1

4
�2z

4 +
1

6
�3z

6

1DoF tetrastable �1z − �2z
3 + �3z

5 − �4z
7

−
1

2
�1z

2 +
1

4
�2z

4 −
1

6
�3z

6 +
1

8
�4z

8

1 From that point, the terms (t) and (�) that indicates dependency of 
time are conveniently suppressed to write some expressions.
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that are related to dimensionless parameters presented in 
Table 2. For more formulation details refer to Costa and 
Savi [5].

The electromechanical system can be rewritten in its canon-
ical form as follows:

where q̄ = [z̄1(𝜏), ̇̄z1(𝜏), z̄2(𝜏), ̇̄z2(𝜏), v̄1(𝜏), v̄2(𝜏)].

(13)̇̄v2 + 𝜑2v̄2 + 𝜅2
(
̇̄z2 − ̇̄z1

)
= 0,

(14)

̇̄q = f(q̄)

=

⎡⎢⎢⎢⎢⎢⎢⎣

̇̄z1
− 2𝜁1 ̇̄z1 + 2𝜁2

�
̇̄z2 − ̇̄z1

�
−
�
1 + 𝛼1

�
z̄1 − 𝛽1z̄

3

1
+ 𝜌Ω2

s

�
z̄2 − z̄1

�
+ 𝜒1v̄1 − 𝜒2v̄2 − ̈̄zb

̇̄z2
−

1

𝜌

�
2𝜁2

�
̇̄z2 − ̇̄z1

�
+ 𝛼2z̄2 + 𝛽2z̄

3

2
− 𝜒2v̄2

�
− Ω2

s

�
z̄2 − z̄1

�
− ̈̄zb

− 𝜑1v̄1 − 𝜅1 ̇̄z1
− 𝜑2v̄2 − 𝜅2

�
̇̄z2 − ̇̄z1

�

⎤⎥⎥⎥⎥⎥⎥⎦

2.2  Performance metrics

The performance analysis of the energy harvester device 
is usually defined by the electrical output variables. In 
this regard, either instantaneous or average values can be 
monitored. The instantaneous electrical power in a simple 
resistive circuit is commonly represented by Eq. (15). The 

average electrical power is represented by Eq. (16), where 
vRMS
i

 are the root mean square of the output voltages.

Table 2  System parameters and values used in the analyses. The values presented in this table are based on established literature sources [6, 9]

Parameter description Symbol Definition Value

Linearized natural frequency of the 1st mass �1

√
k1∕m1

–
Linearized natural frequency of the 2nd mass �2

√
k2∕m2

–
Normalized time � �1t –
Normalized displacement of the 1st mass z̄1(𝜏) z1(t)∕L –
Normalized displacement of the 2nd mass z̄2(𝜏) z2(t)∕L –
Normalized voltage of the 1st circuit v̄1(𝜏) v1(t)∕V –
Normalized voltage of the 2nd circuit v̄2(𝜏) v2(t)∕V –
Normalized base excitation frequency Ω �∕�1 0.01 → 10

Normalized base excitation amplitude � A/L 0.01 → 1

Normalized base excitation displacement z̄b(𝜏) � sin (Ω�) –
Ratio of masses � m2∕m1 1
Normalized mechanical damping coef. of the 1st mechanical DoF �1 c1∕(2�1m1) 0.025
Normalized mechanical damping coef. of the 2nd mechanical DoF �2 c2∕(2�1m1) 0.025
Ratio of linearized natural frequencies Ωs �2∕�1 0.25 → 2

Normalized linear restitution coef. of the 1st mechanical DoF �1 a1∕(�
2

1
m1) −2, 0, 1

Normalized linear restitution coef. of the 2nd mechanical DoF �2 a2∕(�
2

1
m1) −1, 0, 1

Normalized nonlinear restitution coef. of the 1st mechanical DoF �1 b1L
2∕(�2

1
m1) 1

Normalized nonlinear restitution coef. of the 2nd mechanical DoF �2 b2L
2∕(�2

1
m1) 1

Normalized 1st piezoelectric coupling coef. in the mechanical ODE �1 �1V∕(k1L) 0.05
Normalized 2nd piezoelectric coupling coef. in the mechanical ODE �2 �2V∕(k1L) 0.05
Normalized 1st piezoelectric coupling coef. in the electrical ODE �1 �1L∕(Cp1V) 0.5
Normalized 2nd piezoelectric coupling coef. in the electrical ODE �2 �2L∕(Cp2V) 0.5
Normalized electrical conductance of the 1st circuit �1 1∕(Cp1R1�1) 0.05
Normalized electrical conductance of the 2nd circuit �2 1∕(Cp2R2�1) 0.05
Normalized output power of the 1st electrical DoF P̄1(𝜏) P1(t)∕(Cp1�1V

2) –
Normalized output power of the 2nd electrical DoF P̄2(𝜏) P2(t)∕(Cp2�1V

2) –
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Based on these concepts and according to Table 2, the nor-
malized average electrical output power can be determined 
as follows:

3  Multistable characteristics

The magnetic interactions within the system and the elastic 
properties of the structure have shown to be an interesting point 
to be investigated since they are directly related to the possible 
stability states, which are closely related to the enhancement of 
the energy harvesting capacity. The magnetic parameters ( �1 , 
�2 , �1 and �2 ) represent the effects of magnetic fields defined 
by the magnet positioning within the system and its material 
properties, while the structure elastic properties are repre-
sented by the ratio between the structural stiffness of each DoF, 
k2∕k1 = �2

2
m2∕

(
�2
1
m1

)
= Ω2

s
� . For this analysis, Ωs is chosen 

to represent the stiffness changes as both parameters, Ωs and 
� can be used to that end. The value of � = 1 is assumed to be 
constant throughout all the analyses of this work.

The equilibrium configurations of the system can be 
determined by

yielding a solution containing a group of sets of the form 
q̄ =

{
z̄1, ̇̄z1, z̄2, ̇̄z2, v̄1, v̄2

}
j
=
{
Z̄1, 0, Z̄2, 0, 0, 0

}
j
 that deter-

mines each equilibrium position, where j determines the 
specific set within the solution. The nature of each equilib-
rium point can be determined through a linearization around 
each point, evaluating the Jacobian matrix, J , that follows

(15)Pi =
1

Ri

v2
i
,

(16)Pavg =

2∑
i=1

[
1

tf − t0 ∫
tf

t0

Pi dt

]
=

2∑
i=1

[
1

Ri

(
vRMS
i

)2]
.

(17)P̄avg =

2∑
i=1

[
1

𝜏f − 𝜏0 ∫
𝜏f

𝜏0

P̄i d𝜏

]
=

2∑
i=1

[
𝜑i

(
v̄RMS
i

)2]

(18)̇̄q = f(�̄�) = 0,

(19)

J = ∇Tf(q̄)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−1 − 𝛼1 − 𝜌Ω2
s
− 3𝛽1z̄

2
1

− 2
�
𝜁1 + 𝜁2

�
𝜌Ω2

s
2𝜁2 𝜒1 − 𝜒2

0 0 0 1 0 0

Ω2
s

2𝜁2

𝜌
−

𝛼2 + 𝜌Ω2
s
+ 3𝛽2z̄

2
2

𝜌
−

2𝜁2

𝜌
0

𝜒2

𝜌
0 − 𝜅1 0 0 − 𝜑1 0

0 𝜅2 0 − 𝜅2 0 − 𝜑2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

The stability characteristics of each point is evaluated from 
the eigenvalues, � , of the Jacobian matrix. These points can be 
classified into three sets: (1) stable if 

{
𝜇k ∈ ℂ ∣ Re

(
𝜇k

)
< 0

}
 , 

(2) Unstable if 
{
𝜇k ∈ ℂ ∣ Re

(
𝜇k

)
> 0

}
 , and (3) Center if {

�k ∈ ℂ ∣ Re
(
�k

)
= 0

}
 . Besides that, the stability of the 

linearized system at the vicinity of an equilibrium point 
corresponds to the nonlinear system as long as the point is 
hyperbolic, meaning that all the eigenvalues have a non-null 
real part 

(
Re

(
�k

) ≠ 0,∀k
)
 [22].

On this basis, all solutions are hyperbolic and the unsta-
ble points can be split into two distinct groups: saddle-type 
unstable points and source-type unstable points. Saddle-type 
unstable points exhibit one positive eigenvalue, indicating the 
characteristic of a single unstable direction. On the other hand, 
source-type unstable points exhibit two positive eigenvalues, 
indicating the characteristic of two unstable directions. Addi-
tionally, the stability analysis can be further complemented 
by evaluating the normalized form of the potential energy 
function, as detailed in Eq. (20), and sections of the basins of 
attraction of the non-forced system, providing a comprehen-
sive understanding of the system’s stability characteristics.

The solution sets 
{
z̄1, ̇̄z1, z̄2, ̇̄z2, v̄1, v̄2

}
j
=
{
Z̄1, 0, Z̄2, 0, 0, 0

}
j
 

allow the visualization of stability characteristics through 
the subsets 

{
z̄1, z̄2

}
j
=
{
Z̄1, Z̄2

}
j
 , as the other values are zero 

and do not change. From this point forward, the term “basin 
of attraction” will be used as a shorthand to the expression 
“section of the basin of attraction”, as the basin of attraction 
of the system has 6 dimensions, while the analysis is reduced 
to a section of the basin with 2 dimensions. The result of the 
stability analysis is summarized in Figs. 3, 4, 5 and 6. Each 
figure represents a different configuration defined by a set of 
values for the magnetic restitution parameters �1 , �2 , �1 and 
�2 . In each case, the stability state is determined for different 
values of Ωs . In the first row (letters a, b, c and d) the poten-
tial energy levels are associated with the equilibrium posi-
tions and its vicinity. The colorbar represents the potential 

(20)
Ū =

1

2

(
1 + 𝛼1

)
z̄2
1
+

1

4
𝛽1z̄

4
1
+

1

2
𝜌Ω2

s

(
z̄2 − z̄1

)2
+

1

2
𝛼2z̄

2
2

+
1

4
𝛽2z̄

4
2
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energy levels, with darker colors representing lower energies 
and lighter colors representing higher energies. The second 
row (letters e, f, g and h) shows the basins of attraction plot-
ted using up to four colors to indicate the stable attractors, 
which are the stable equilibrium points (SEPi  , i = 1,… , 4 ) 
where the system converges if released from the initial con-
ditions within the domain z̄1 × z̄2 , where z̄1 ∈ [−2, 2] and 
z̄2 ∈ [−2, 2] , and ̇̄z1 = ̇̄z2 = v̄1 = v̄2 = 0 . In both rows, blue 
dots indicate stable equilibria, orange triangles indicate 
unstable saddle-type equilibria, and red polygons (dia-
monds) indicate unstable source-type equilibria. Also, for 

each case, the stability plots are followed by a possible rep-
resentation of the initial and final stable equilibrium states, 
related to the beam structure, as Ωs increases (letter i).

Figure 3 displays a case with (�1, �2, �1, �2) = (−2,−1,
1, 1) , related to the configuration represented in Fig.  3i 
where the two sets of magnets are set up in repulsive mode.

In this case, for low values of Ωs < 0.5 , that is, when the 
inner beam is softer than the outer beam, the system exhibit 
9 equilibrium positions, being 4 of them stable and 5 unsta-
ble, which means that a tetrastable system is of concern. 
By increasing the stiffness of the inner beam with respect 

Fig. 3  Equilibrium configurations for a set of Ωs values, consid-
ering the magnetic configuration represented by the coefficients 
(�1, �2, �1, �2) = (−2,−1, 1, 1) and a fix mass ratio of � = 1 . The 
first row represent the potential energy levels for each configuration 
a for Ωs = 0.25 , b for Ωs = 0.5 , c for Ωs = 1 , and d for Ωs = 2 . The 
colorbar indicates the level of potential energy for each combination 
of system positions z̄1 and z̄2 . The second row represents the evolu-
tion of the basins of attraction for each configuration e for Ωs = 0.25 , 
f for Ωs = 0.5 , g for Ωs = 1 , and (h) for Ωs = 2 , where each color 
represents the stable equilibrium position the system converges 

to if released from an initial condition within the z̄1 × z̄2 parameter 
domain. The equilibrium position associated with each colored region 
is the one located within the largest region of that specific color. A 
grid of 2000 × 2000 points is used for each basin. In both rows, blue 
dots represent stable equilibrium positions, orange triangles represent 
unstable saddle-type equilibrium positions and red polygons repre-
sent unstable source-type equilibrium positions. i Represents one 
of the possible representations of the stable equilibrium states as Ωs 
increases for this set of restitution parameters
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to the outer beam, the structure’s restitution force becomes 
stronger than the magnetic force, eliminating 6 equilibrium 
positions, resulting in a bistable configuration with 2 stable 
equilibrium positions and 1 unstable.

Figure 4 shows a case with (�1, �2, �1, �2) = (−2, 1, 1, 1) . 
In this case, for all values of Ωs the system remains in bista-
ble mode. A possible representation of this case is presented 
in Fig. 4e, where the set of magnets attached to the outer 
beam remains in repulsive mode, while the set of magnets 
related to the inner beam is set up to attractive mode. With a 
softer inner beam, it tends to retain the position of the inner 
beam close to zero as the magnetic force is stronger than the 
inner beam structure’s restitution force. By increasing Ωs , 
the enhancement in inner beam stiffness tends to increase 
the distance of its equilibrium position with respect to the 
neutral axis, while reducing the distance of the outer beam 

equilibrium position. Another possible representation of this 
case can retain the repulsive mode of the inner beam, but 
with an increased distance between the magnets, sufficient 
to not induce a change in stability of the inner beam, and 
remaining with the nonlinear characteristics. The final state 
of this configuration, represented in Fig. 4d, is similar to the 
one showed in Fig. 3d, but with a shorter distance between 
stable equilibrium positions.

Figure 5 represent a case with (�1, �2, �1, �2) = (0,−1, 1, 1)

(�1, �2, �1, �2) = (0,−1, 1, 1) . This case also consists in a 
bistable characteristic for all values of Ωs analyzed. A possi-
ble representation for this configuration is presented in Fig. 5e 
where the magnets related to the outer beam are set up in 
attractive mode; while, the magnets of the inner beam are 
arranged in repulsive mode. Similar to the previous case, for 
a softer inner beam, it presents a higher amplitude than the 

Fig. 4  Equilibrium configurations for a set of Ωs values, consid-
ering the magnetic configuration represented by the coefficients 
(�1, �2, �1, �2) = (−2, 1, 1, 1) and a fix mass ratio of � = 1 . The first 
row represent the potential energy levels for each configuration a for 
Ωs = 0.25 , b for Ωs = 0.5 , c for Ωs = 1 , and d for Ωs = 2 . The color-
bar indicates the level of potential energy for each combination of 
system positions z̄1 and z̄2 . The second row represents the evolution 
of the basins of attraction for each configuration e for Ωs = 0.25 , f 
for Ωs = 0.5 , g for Ωs = 1 , and h for Ωs = 2 , where each color rep-
resents the stable equilibrium position the system converges to 

if released from an initial condition within the z̄1 × z̄2 parameter 
domain. The equilibrium position associated with each colored region 
is the one located within the largest region of that specific color. A 
grid of 2000 × 2000 points is used for each basin. In both rows, blue 
dots represent stable equilibrium positions, orange triangles represent 
unstable saddle-type equilibrium positions and red polygons repre-
sent unstable source-type equilibrium positions. i Represents one 
of the possible representations of the stable equilibrium states as Ωs 
increases for this set of restitution parameters
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outer beam. The force transmitted by the repulsive magnets 
to the beam structure cause a small deflection in the outer 
beam, translating its equilibrium position off the neutral axis. 
By increasing Ωs , the stiffness of the inner beam increases, 
leading to an increase in the deflection of the outer beam, 
and a reduction in the reflection of the inner beam. Another 
representation of this state can retain the repulsive character-
istics of the outer beam’s magnets, but with increased distance 
between them. This would retain the nonlinear characteristics 
but the forces between the magnets would not be sufficient 
to induce more equilibrium positions. The final state of this 
configuration, represented in Fig. 5d, is similar to the final 
state configuration of the previous case, as showed in Fig. 4d.

The last equilibrium state found is depicted in Fig. 6. In 
this case, the system presents monostable characteristics for all 
values of Ωs . Possible representations of this state comprises of 

the two sets of magnets set up in attractive mode or in repulsive 
mode, but with an increased distance between magnets to make 
the magnetic interactions weak, remaining nonlinear.

4  Energy harvesting performance 
characteristics

In this section, the performance characteristics of the system 
are of concern. Based on the conclusions of the stability 
analysis, eight configurations with different magnetic and 
structural parameters are chosen and labeled, being sum-
marized in Table 3. For each set of magnetic arrangements, 
two values of Ωs are chosen (0.25 and 1), enabling a general 
overview of the system’s performance across each set of 
magnetic restitution parameters. Furthermore, the analysis is 

Fig. 5  Equilibrium configurations for a set of Ωs values, consid-
ering the magnetic configuration represented by the coefficients 
(�1, �2, �1, �2) = (0,−1, 1, 1) and a fix mass ratio of � = 1 . The first 
row represent the potential energy levels for each configuration a for 
Ωs = 0.25 , b for Ωs = 0.5 , c for Ωs = 1 , and d for Ωs = 2 . The color-
bar indicates the level of potential energy for each combination of 
system positions z̄1 and z̄2 . The second row represents the evolution 
of the basins of attraction for each configuration e for Ωs = 0.25 , f 
for Ωs = 0.5 , g for Ωs = 1 , and h for Ωs = 2 , where each color rep-
resents the stable equilibrium position the system converges to 

if released from an initial condition within the z̄1 × z̄2 parameter 
domain. The equilibrium position associated with each colored region 
is the one located within the largest region of that specific color. A 
grid of 2000 × 2000 points is used for each basin. In both rows, blue 
dots represent stable equilibrium positions, orange triangles represent 
unstable saddle-type equilibrium positions and red polygons repre-
sent unstable source-type equilibrium positions. i Represents one 
of the possible representations of the stable equilibrium states as Ωs 
increases for this set of restitution parameters
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divided into two aspects, considering lower and higher levels 
of input mechanical excitation amplitude, �.

A normalized harmonic excitation displacement of the 
form z̄b = 𝛾 sin (Ω𝜏) is chosen to represent the available 

Fig. 6  Equilibrium configurations for a set of Ωs values, consid-
ering the magnetic configuration represented by the coefficients 
(�1, �2, �1, �2) = (0, 1, 1, 1) and a fix mass ratio of � = 1 . The first 
row represent the potential energy levels for each configuration a for 
Ωs = 0.25 , b for Ωs = 0.5 , c for Ωs = 1 , and d for Ωs = 2 . The color-
bar indicates the level of potential energy for each combination of 
system positions z̄1 and z̄2 . The second row represents the evolution 
of the basins of attraction for each configuration e for Ωs = 0.25 , f 
for Ωs = 0.5 , g for Ωs = 1 , and h for Ωs = 2 , where each color rep-
resents the stable equilibrium position the system converges to 

if released from an initial condition within the z̄1 × z̄2 parameter 
domain. The equilibrium position associated with each colored region 
is the one located within the largest region of that specific color. A 
grid of 2000 × 2000 points is used for each basin. In both rows, blue 
dots represent stable equilibrium positions, orange triangles represent 
unstable saddle-type equilibrium positions and red polygons repre-
sent unstable source-type equilibrium positions. i Represents one 
of the possible representations of the stable equilibrium states as Ωs 
increases for this set of restitution parameters

Table 3  Stability configurations 
based on the combination of 
different magnetic and structural 
parameters

Magnetic Structural Stability Configuration

�1 �2 �1 �2 � Ωs

−2 −1 1 1 1 0.25 Tetrastable I
1 Bistable II

−2 1 1 1 1 0.25 Bistable III
1 Bistable IV

0 −1 1 1 1 0.25 Bistable V
1 Bistable VI

0 1 1 1 1 0.25 Monostable VII
1 Monostable VIII



Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2024) 46:212  Page 11 of 24   212 

environmental mechanical energy, where � and Ω denote the 
excitation amplitude and frequency, respectively. Numeri-
cal investigations are performed by means of average output 
power diagrams (OPDs) that shows the steady state average 
electrical output power under the applied excitation z̄b within 
the � × Ω parameter domain. The diagrams are built with a 
grid of 1000 × 1000 sample points, each of which is obtained 
from a time series from numerical integration employ-
ing the fourth-order Runge–Kutta method considering time 
steps Δ� ∝ (T = 2�∕Ω) . For each sample point, 4000 exci-
tation periods (4000T) are imposed, with the last 500 con-
sidered to be the steady state, that is, when � ≥ 0.875�f ; �f 
denotes the final time of integration. The initial conditions 
for each point on the diagrams are based on the stable posi-
tion 

{
z̄1, ̇̄z1, z̄2, ̇̄z2, v̄1, v̄2

}
=
{
Z̄1, 0, Z̄2, 0, 0, 0

}
 represented by 

the black basin of attraction (SEP2 ) for the configurations I to 
VI at Ωs = 0.25 , and the only existing stable position for the 
configurations VII and VIII. By utilizing these diagrams, a 
comprehensive overview of the qualitative performance char-
acteristics of the system under different excitation conditions 
is presented.

4.1  Performance at high‑amplitude mechanical 
excitation

Figure  7 depicts the OPDs for the configurations with 
Ωs = 0.25 , as described in Table 3. The colorbars accom-
panying each diagram represent the average output power 
levels, restricted to a specific limit value to facilitate inter-
pretation. The uppermost values indicated by the peak of the 
colorbar arrow represent the maximum normalized output 
power achieved by the harvester. By examining the OPDs 
at higher excitation amplitudes ( � ≥ 0.5 ), it is evident that 
configurations I and III outperform the others for lower fre-
quencies ( 0.01 ≤ Ω < 3) . These configurations exhibit larger 
regions characterized by good output power values, repre-
sented by shades of blue. Moreover, configurations I and V 
demonstrate larger regions associated with very high output 
power (shades of red) for mid-range frequencies. It should 
be noted that, in these regions, configuration III displays 
shorter, scattered regions of very high performance, primar-
ily related to the presence of distinct attractors associated 
with low and high performance, as previously discussed by 

Fig. 7  Average output power diagrams (OPDs) for the configura-
tions related to Ωs = 0.25 . The colorbars represent the average output 
power levels for each excitation condition. To facilitate the interpreta-
tion, the range of each colorbar is restricted to a limit value, with the 
uppermost value of the colorbar on the peak of the colorbar arrow 

representing the maximum output power obtained by the harvester. 
All output power values are multiplied by 10−3 . White lines with capi-
tal letter labels are discussed in text and are represented by the fre-
quency response diagrams in Fig. 8
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Costa and Savi [5]. Nonetheless, configuration III shows 
small regions of superior performance at lower � values 
( 0.5 ≤ � ≤ 0.6 ) when compared to configurations I and V.

In the case of higher frequencies ( 7 ≤ Ω ≤ 10) , almost 
all regions observed are predominantly associated with the 
presence of multiple dynamical attractors. This type of phe-
nomenon is further explored in Sect. 4.3. Notably, configu-
ration III exhibits superior performance in these scenarios. 
Conversely, configuration VII consistently demonstrates the 
worst performance across all examined scenarios.

These findings can be further illustrated in Fig. 8, which 
provides a visual representation of the output power for con-
stant values of � , denoted as A ( � ≈ 0.5 ), B ( � ≈ 0.7 ) and C 
( � ≈ 0.9 ) in each OPD presented in Fig. 7. Notably, configu-
ration I, characterized by tetrastability, demonstrates superior 
performance in terms of both bandwidth and maximum output 
power for � ≈ 0.5 and � ≈ 0.7 . Conversely, configurations III 
and V, associated with bistability, exhibit similar performance 
characteristics, while configuration VII, associated with mon-
ostability, consistently displays the poorest performance. Fur-
thermore, for values � ≈ 0.9 , all configurations demonstrate 
comparable performance, although configuration VII exhibits 
a slightly lower maximum output power when compared to the 
other configurations.

Details about each kind of behavior can be observed in Figs. 9 
and 10 that present phase subspaces z̄1 × ̇̄z1 , z̄2 × ̇̄z2 , and z̄1 × z̄2 
of points 1 to 8 situated at the vicinity of maximum output power 
values in Fig. 8. Equilibrium points of the corresponding con-
figuration in the z̄1 × z̄2 are also displayed for spatial reference. 
These figures offer insights into the type of motion that leads to 

high performance under high-amplitude excitation. Essentially, 
the eight cases can be categorized into two sets based on the 
shape of the orbits. The 1T gray orbits of high performance are 
found at intermediary values of frequency; while, the 3T orbits 
of high performance are found at higher values of frequency.

Figure 11 depicts the performance analysis for different con-
figurations of the harvester with Ωs = 1 , as showed in Table 3, 
considering values of � ≥ 0.5 . In this scenario, the careful obser-
vation of the OPDs points at a greater overall bandwidth and 
maximum output power for the configuration II. Configurations 
IV and VI present very similar performance to each other, and 
configuration VIII displays the worst performance. In a sup-
plementary manner, Fig. 12 shows that the difference in per-
formance between configurations II and configurations IV and 
VI is reduced as � increases. Nevertheless, configuration VIII, 
associated with monostability, displays the worst performance.

Overall, this subsection demonstrates that in sce-
narios with higher amplitude excitations ( � ≥ 0.5 ), the 
configurations associated with the magnetic parameters 
(�1, �2, �1, �2) = (−2,−1, 1, 1) exhibit superior performance. 
Conversely, configurations associated with monostability con-
sistently display the worst performance.

4.2  Performance at low amplitude mechanical 
excitation

Henceforth, the performance associated with lower ampli-
tude excitation scenarios are of concern. Costa and Savi [5] 
had established that that lower excitation amplitudes cou-
pled with higher excitation frequencies results in negligible 

Fig. 8  Average output power for different values of constant � . Each 
level of � is highlighted by a different color: black for � ≈ 0.5 , orange 
for � ≈ 0.7 and red for � ≈ 0.9 . The constant values of � are repre-

sented in Fig. 7 by the labels A, B and C. All average output power 
values are multiplied by 10−3
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Fig. 9  Phase subspaces z̄1 × z̄2 , z̄1 × ̇̄z1 and z̄2 × ̇̄z2 of the steady state 
response of the system. Each set of subspaces represent each red 
point marked and labeled as 1, 2, 3 and 4 in Fig. 8. The associated 

equilibrium positions are displayed in each z̄1 × z̄2 subspace for spa-
tial reference. Poincaré maps are highlighted in red or black to indi-
cate the type of dynamical response of the system

Fig. 10  Phase subspaces z̄1 × z̄2 , z̄1 × ̇̄z1 and z̄2 × ̇̄z2 of the steady state 
response of the system. Each set of subspaces represent each red 
point marked and labeled as 5, 6, 7 and 8 in Fig. 8. The associated 

equilibrium positions are displayed in each z̄1 × z̄2 subspace for spa-
tial reference. Poincaré maps are highlighted in red or black to indi-
cate the type of dynamical response of the system
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output power, being determined as a region of poor perfor-
mance. This characteristic holds true for all the configu-
rations examined in this study, as showed in Figs. 7 and 
11. Therefore, to focus on the significant excitation param-
eters, the subsequent OPDs are constrained to the range of 
0.01 ≤ � ≤ 0.5 and 0.01 ≤ Ω ≤ 5 . This region exhibits sub-
stantial output power for all configurations analyzed under 
low amplitude excitation scenarios ( � ≤ 0.5).

Building upon the methodology employed in the previous 
subsection, Fig. 13 presents the OPDs for the configurations 
related to Ωs = 0.25 . Subsequently, Fig. 14 further inves-
tigates the performance by focusing on specific constant 
values of � . These values, marked by dashed lines within 
the OPDs, are identified as G ( � ≈ 0.03 ), H ( � ≈ 0.1 ), and 
I ( � ≈ 0.35).

Overall, an overview of the OPDs points that configura-
tion I offers superior overall performance compared to the 
other configurations. This is evident from the larger regions 
of high performance (represented by shades of red) observed 
in configuration I. In the same context, configuration III and 

V exhibit similar bandwidths, with configuration III display-
ing larger areas of high output power. Conversely, configura-
tion VII exhibits the worst overall performance.

Yet, a careful analysis of very low excitation levels 
( � ≤ 0.1 ) is crucial, as many practical applications exhibit 
this characteristic. When considering such scenarios, con-
figuration V and VII demonstrate better performance in 
terms of maximum output power; while, configurations III 
and V shows superior performance in terms of bandwidth. 
Surprisingly, configuration I displays the worst perfor-
mance for these excitation levels. In contrast, by increasing 
the excitation levels, a significant shift occurs, leading to 
configuration I exhibiting improved overall performance; 
while, configuration VII shows the worst performance. 
Notably, the qualitative difference in performance remains 
consistent as � increases. Figure 14 provides additional 
visual support for these findings through the frequency 
diagrams.

To deeply analyze this abrupt change in behavior, spe-
cific points in the vicinity of the maximum output powers 

Fig. 11  Average output power diagrams (OPDs) for the configura-
tions related to Ωs = 1 . The colorbars represent the average output 
power levels for each excitation condition. To facilitate the interpreta-
tion, the range of each colorbar is restricted to a limit value, with the 
uppermost value of the colorbar on the peak of the colorbar arrow 

representing the maximum output power obtained by the harvester. 
All output power values are multiplied by 10−3 . White lines with capi-
tal letter labels are discussed in text and are represented by the fre-
quency response diagrams in Fig. 12
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within the frequency diagrams are carefully selected and 
highlighted in red. These points are labeled from 1 to 8. 
Figures 15 and 16 illustrate three phase subspaces ( ̄z1 × z̄2 , 
z̄1 × ̇̄z1 and z̄2 × ̇̄z2 ) of each selected point. Equilibrium points 
corresponding to each case in the z̄1 × z̄2 phase subspaces 
are outlined for spatial reference. By comparing points 1 
and 5, 2 and 6, 3 and 7, as well as 4 and 8 in Figs. 15 and 
16, it becomes evident that the performance at very low 
� is constrained by the potential energy barriers inherent 
of multistable systems. In the case of bistable and tetrast-
able configurations, the system remains trapped around a 
stable equilibrium position. As the system receives addi-
tional energy with increasing � , it surpasses the potential 
barriers, leading to greater displacement and consequently 
improved performance. In this scenario, while the mon-
ostable configuration also experiences an increase in per-
formance, it remains severely limited by the monostable 
potential. Additionally, in all subspaces, Poincaré maps are 
highlighted indicating the dynamical characteristics of the 
system, showing that enhanced performance are associated 
with higher displacement and complex phenomena, as indi-
cating the orbits of periodicity 3T (green orbit), 5T (purple 
orbit), and chaotic (red orbit) in Fig. 16, where T is the exci-
tation period. These observations shed light on the underly-
ing mechanisms responsible for the observed behavior.

Figures 17 and 18, related to the configurations associated 
with Ωs = 1 , exhibit a similar qualitative behavior, whereby 
the bistable configurations display poorest maximum output 
power for very low � . As � increases, there is a notable surge 

in performance attributed to the high amplitude response of 
the system, surpassing the energy barriers.

Still, a careful analysis of the OPDs in Fig. 17 reveals 
that configuration II demonstrates superior performance, 
characterized by larger regions of very high performance 
(depicted by shades of red). Nevertheless, for operation at 
lower frequencies ( Ω ≤ 1 ), configurations IV and VI outper-
form configuration II, as they encompass regions of good 
performance (indicated by shades of blue); while, configura-
tion II presents negligible performance (indicated by shades 
of purple). In contrast, configuration VIII, associated with 
monostability, exhibits by far the worst performance.

In general, this subsection demonstrates that for very low 
excitation levels, configurations VII and VIII, associated 
with monostability, yield higher output powers. On the other 
hand, configurations III, V, and IV exhibit superior band-
widths. For low to medium excitation levels ( 0.1 ≤ � ≤ 0.5 ), 
configurations I and II exhibit better performances, while 
configurations VII and VIII consistently perform poorly.

4.3  Multiple solution regions

In Sect. 4.1, output power diagrams (OPDs) are presented 
for all configurations. Across all these diagrams, a distinctive 
region becomes evident when examining high-frequency and 
high-amplitude values. Within these zones, a non-smooth, 
irregular distribution of data points, showcasing a wide 
range of high and low output powers can be observed. This 
subsection is devoted to a comprehensive exploration of this 

Fig. 12  Average output power for different values of constant � . Each 
level of � is highlighted by a different color: black for � ≈ 0.5 , orange 
for � ≈ 0.7 and red for � ≈ 0.9 . The constant values of � are repre-

sented in Fig. 11 by the labels D, E and F. All average output power 
values are multiplied by 10−3
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Fig. 13  Average output power diagrams (OPDs) for the configura-
tions related to Ωs = 0.25 . The colorbars represent the average output 
power levels for each excitation condition. To facilitate the interpreta-
tion, the range of each colorbar is restricted to a limit value, with the 
uppermost value of the colorbar on the peak of the colorbar arrow 

representing the maximum output power obtained by the harvester. 
All output power values are multiplied by 10−3 . White lines with capi-
tal letter labels are discussed in text and are represented by the fre-
quency response diagrams in Fig. 14

Fig. 14  Average output power for different values of constant � . Each 
level of � is highlighted by a different color: black for � ≈ 0.03 , orange for 
� ≈ 0.1 and red for � ≈ 0.35 . The constant values of � are represented in 
Fig. 11 by the labels I, H and J. All average output power values are mul-

tiplied by 10−3 . Red points labeled with numbers are discussed in text and 
are represented by the phase spaces in Figs. 15 and 16
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intriguing area, which from this point forward, is referred as 
the ’scattered zone’.

For that, consider Fig. 19 where the OPD for configura-
tion I is selected. Here, a small region highlighted by the 
black dashed square and labeled as “PS” is chosen and, 
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Fig. 15  Phase subspaces z̄1 × z̄2 , z̄1 × ̇̄z1 and z̄2 × ̇̄z2 of the steady state 
response of the system. Each set of subspaces represent each red 
point marked and labeled as 1, 2, 3 and 4 in Fig. 14. The associated 

equilibrium positions are displayed in each z̄1 × z̄2 subspace for spa-
tial reference. Poincaré maps are highlighted in red or black to indi-
cate the type of dynamical response of the system

Fig. 16  Phase subspaces z̄1 × z̄2 , z̄1 × ̇̄z1 and z̄2 × ̇̄z2 of the steady state 
response of the system. Each set of subspaces represent each red 
point marked and labeled as 5, 6, 7 and 8 in Fig. 14. The associated 

equilibrium positions are displayed in each z̄1 × z̄2 subspace for spa-
tial reference. Poincaré maps are highlighted in red or black to indi-
cate the type of dynamical response of the system
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Fig. 17  Average output power diagrams (OPDs) for the configura-
tions related to Ωs = 1.00 . The colorbars represent the average output 
power levels for each excitation condition. To facilitate the interpreta-
tion, the range of each colorbar is restricted to a limit value, with the 
uppermost value of the colorbar on the peak of the colorbar arrow 

representing the maximum output power obtained by the harvester. 
All output power values are multiplied by 10−3 . White lines with capi-
tal letter labels are discussed in text and are represented by the fre-
quency response diagrams in Fig. 18

Fig. 18  Average output power for different values of constant � . 
Each level of � is highlighted by a different color: black for � ≈ 0.03 , 
orange for � ≈ 0.1 and red for � ≈ 0.35 . The constant values of � are 

represented in Fig.  11 by the labels L, K and J. All average output 
power values are multiplied by 10−3
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within this region, four very close points with � = 0.5 and 
distinct values of Ω are chosen to be analyzed.

Figure 20 depicts the phase subspaces z̄1 × z̄2 , z̄1 × ̇̄z1 
and z̄2 × ̇̄z2 of the steady state response of the chosen points 
within the black dashed rectangle. For each case, the average 

output power, P̄avg , is highlighted, showing that a small per-
turbation in excitation parameters can alter significantly the 
system’s response, influencing its performance. In this case, 
four types of attractors are shown: 2 types of 3T attractors, a 
9T attractor and a quasiperiodic-like attractor (T represent-
ing the period of excitation), each manifesting a distinct P̄avg.

Results presented in Fig. 20 suggest that the scattered 
zones are regions with many coexisting solutions. In order 
to confirm this hypothesis, consider an in-depth analysis of 
the basins of attraction of the forced system for the subspace 
z̄1 × z̄2 , as showcased in Figs. 21 and 22. This analysis cat-
egorizes the basins into two distinct types: those on the left, 
which exclusively consider attractors based on the system’s 
motion characteristics; and those on the right, which also 
incorporate the impact of average output power.

The left-sided basins employ a classification methodol-
ogy based on the steady state Poincaré maps and Lyapunov 
exponents, as detailed in Costa and Savi [5], to classify dif-
ferent types of dynamical attractors. These attractors are rep-
resented by a range of colors, each denoting different periodic 
or aperiodic behaviors. Dark gray corresponds to 1T periodic 
attractors, yellow to 2T attractors, green to 3T attractors, pur-
ple to 5T attractors, and light blue to multiple periods (MP), 
comprising all periodic attractors with a periodicity equals 
or greater than 6T. Additionally, red signifies chaotic (CH) 
attractors; while, dark red indicates hyperchaotic (HC) attrac-
tors. This classification is summarized in the colorbars next to 
the left-sided basins in each row.

Fig. 19  Output power diagrams (OPD) for configuration I. The color-
bars represent the average output power levels for each excitation 
condition. To facilitate the interpretation, the range of each colorbar 
is restricted to a limit value, with the uppermost value of the color-
bar on the peak of the colorbar arrow representing the maximum 
output power obtained by the harvester. All output power values are 
multiplied by 10−3 . The black dashed rectangle region labeled as PS 
contains all the phase subspaces detailed in Fig. 20. Numbered white 
circles marks the locations of each basin of attraction displayed in 
Figs. 21 and 22

Fig. 20  Phase subspaces z̄1 × z̄2 , z̄1 × ̇̄z1 and z̄2 × ̇̄z2 of the steady 
state response of the system. Each set of subspaces represent a case 
with � = 0.5 and a distinct Ω value within the PS zone highlighted 
in Fig. 19. The associated equilibrium positions are displayed in each 

z̄1 × z̄2 subspace for spatial reference. Poincaré maps are highlighted 
in black to indicate the type of dynamical response of the system. 
Also the average output power, P̄avg , manifested in each response is 
highlighted



 Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2024) 46:212   212  Page 20 of 24



Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2024) 46:212  Page 21 of 24   212 

Furthermore, the right-sided basins employ a similar clas-
sification methodology, while also taking into consideration 
different values of P̄avg to classify the attractors. To account 
for fluctuations and potential numerical errors associated 
with integration scheme, the classification considers inter-
vals with a margin of approximately 2% around the P̄avg val-
ues. In other words, when identifying a value of P̄avg , any 
values falling within a range of ±2 % of the original value 
associated with a single periodic or aperiodic attractor are 
grouped as a unique motion–power attractor within this type 
of basin.

The motion–power attractors, which are based on the inter-
play of motion and power, are distinguished by various colors, 
as depicted in the horizontal bar plot adjacent to the right-
sided basin. Additionally, the display includes information 
such as the type of motion, the P̄avg value, and the area (A) 
occupied by the attractor within the basin. Moreover, when 
there are more than one attractor that occupies less than 1% 
of the basin area ( A < 1% ), they are consolidated into a single 
color classification labeled as OT×Nattr , where ’OT’ signifies 
’other attractors,’ and Nattr represents the number of attractors 
combined in this manner. If a specific attractor motion name 
replaces ’OT’, it indicates that all consolidated attractors share 
the same type of motion.

Figure 21a presents the basins of attraction corresponding 
to the point 1, as indicated in Fig. 19, chosen to represent 
the scattered zone within the OPD. These basins reveal the 
potential for 39 distinct motion–power attractors to emerge 
depending on the displacement initial conditions, with 13 
of them having a chance exceeding 1% to arise based on the 
occupied area. Among these 13 main attractors, four to five 
magnitudes of P̄avg are observed. Furthermore, an examina-
tion of the basin morphology reveals that the most predict-
able responses originate from initial conditions situated at 
the corners of the plot. In these areas, the basin shapes are 
more consistent, and the values of P̄avg are notably higher. 
Alternatively, the basin morphology near the stable equi-
librium points are associated with an irregular fractal-like 
pattern, which can be associated with the unpredictability. 
These characteristics can be associated with the existence of 
the scattered zone in the OPDs, as they are built utilizing the 
a stable point as initial condition for all its points.

In a similar manner, Fig. 21b displays a case below the 
scattered zone, with still a mid-high Ω but with a lower � . 

This region shows 32 motion–power attractors, with 7 of 
them occupying more than 1% of the plot area. Although 
this still represents a substantial number of attractors, it is 
fewer in comparison with point 1. The basin morphology, 
however, shows the opposite of the previous basin. In this 
case, the basin shapes near the equilibrium positions exhibit 
greater consistency, suggesting a higher degree of predict-
ability; whereas, the surroundings of the plot are character-
ized by fractal-like patterns, which means a higher degree of 
unpredictability. Additionally, it is worth noting that in this 
case, the predictable zones with larger areas exhibit lower 
values of P̄avg , while the zones associated with unpredict-
ability show higher performance.

Figure 21c shows the basin of the point 4 located in the 
OPD. In this case, the basins show characteristics that, in 
terms of output power and morphology, closely resemble 
those observed in the basin presented in Fig. 21b. Neverthe-
less, it implies that a significant reduction in the number of 
motion–power attractors can be achieved by reducing the fre-
quency and amplitude of excitation. This reduction leads to 
an expansion of the overall area occupied by each attractor, 
enhancing the predictability of those with more consistent 
areas.

This hypothesis is strengthened by the basins presented in 
Fig. 22, that represents the points 4 and 5 highlighted in Fig. 19. 
These basins reveal that as the excitation frequency is decreased 
toward values closer to the linear natural frequency of the struc-
ture, a significant reduction in the number of attractors occurs. 
In point 5, there is only one attractor, while in point 4, there 
is virtually one. It is worth noting that the term ’virtually one’ 
is used for point 4 because this basin reveals the presence of 
hyperchaotic responses, indicating that each point of the attractor 
represent a distinct, but similar response, in qualitative terms. 
This is supported by the right-sided basin which shows the clas-
sification of distinct hyperchaotic attractors with similar P̄avg 
values and amorphous morphology of the basin. In these two 
instances, it becomes evident that the dynamical response and 
performance exhibit a remarkable level of predictability in point 
4, and is 100% predictable in point 5.

Therefore, the scattered zone is a region with a high 
amount of coexisting solutions, which reduces the predict-
ability of the system’s performance. It seems that a con-
trol scheme is needed for the system to effectively operate 
within this region, ensuring good performance. Moreover, 
it is noticeable that the reducing of the frequency of exci-
tation to a value near the linear natural frequencies can 
drastically improve its predictability. As a final point, the 
findings for Configuration I can be extrapolated for other 
configurations, however, further analyses of the remain-
ing configurations must be carried out in order to be sure 
of that.

Fig. 21  Basins of attraction of the forced system for the subspace 
z̄1 × z̄2 : (a) Point 1, (b) Point 2, and (c) Point 3 (as highlighted in 
Fig. 19). The left-sided basins show the attractors related to the type 
of motion of the system, with each color of the colorbar representing 
one type of motion. The right-sided basins also incorporate the value 
of P̄avg as a mean of classification, with the bar plot representing all 
the distinct motion–power attractors. Further details regarding the 
construction of the basins are discussed in text. A grid of 1000 × 1000 
points is used

◂
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5  Conclusions

This investigation deals with a compact multistable non-
linear energy harvester proposed in Costa and Savi [5] to 
encompass various magnetic setups within the system. The 
harvester, designed to efficiently operate in restricted and 
compact spaces, is built upon classical structures using the 
cantilever beam as its foundation. By cutting off a section 
of the main beam, adding another in the inner part and 
incorporating a new set of magnets and transducer, the 
device exhibits multistability characteristics. A reduced 
order electromechanical model employing a two-degrees-
of-freedom structure is chosen to represent the harvester 
and a qualitative investigation of the system is performed.

Stability analysis reveals that by considering different 
magnetic restitution parameters ( �1 , �2 , �1 , �2 ), the system 
can achieve tetrastability (with four stable equilibria), vari-
ous forms of bistability (with two stable equilibria), and 
monostability (with one stable equilibria). Taking into 
account these differences, eight configurations are selected 
based on the magnetic setups for a comprehensive perfor-
mance analysis. Additionally, the analysis is divided into two 
aspects to evaluate the system’s performance under low and 
high excitation levels.

Results show that for very low excitation levels, mon-
ostable configurations yield higher output powers but infe-
rior bandwidths compared with bistable configurations. 
Conversely, bistable configurations exhibit superior band-
widths but lower output power. Among the configurations, 

Fig. 22  Basins of attraction of the forced system for the subspace 
z̄1 × z̄2 : (a) Point 4 and (b) Point 5 (as highlighted in Fig.  19). The 
left-sided basins show the attractors related to the type of motion of 
the system, with each color of the colorbar representing one type of 
motion. The right-sided basins also incorporate the value of P̄avg as 

a mean of classification, with the bar plot representing all the distinct 
motion–power attractors. Further details regarding the construction of 
the basins are discussed in text. A grid of 1000 × 1000 points is used 
in each plot
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the tetrastable configuration performs the poorest in this 
scenario. However, for low to high excitation levels, con-
figurations I (tetrastable) and II (bistable) associated with 
magnetic parameters ( �1 , �2 , �1 , �2 ) = ( −2 , −1 , 1, 1) present 
superior performance in terms of maximum power output 
and bandwidth when compared to other configurations. The 
other bistable configurations exhibit similar performance 
when compared to each other. At very high excitation levels, 
the performance difference between bistable and tetrastable 
configurations reduces, as well as between monostable and 
bistable configurations. Nevertheless, all monostable con-
figurations consistently underperform in scenarios with low 
to very high excitation levels. So, in general, configurations 
with smaller values of natural frequency ratio, Ωs,  present 
superior performance.

Furthermore, the observed variations in system behavior 
across these different scenarios are closely tied to the input 
energy levels. Tetrastable and bistable configurations exhibit 
potential energy barriers, which under low mechanical exci-
tation levels, cannot be overcome due to insufficient energy, 
limiting the displacement of these systems and resulting in 
poor performance. As the system is powered with enough 
mechanical energy, the multistable characteristics enhance 
the displacement of the system and its complexity, result-
ing in enhanced performance. Moreover at high excitation 
levels, results indicate that the orbits demonstrating optimal 
performance consistently manifests as 1T attractors when 
occurring at intermediary frequency values and as 3T attrac-
tors when observed at higher frequency values. These attrac-
tors exhibit similar shapes.

Finally, the analysis of the basins of attraction for the 
forced system in configuration I highlights that operating 
under high-frequency and high-amplitude excitation con-
ditions can result in the emergence of numerous coexisting 
solutions. In such scenarios, the predictability of the sys-
tem’s performance is reduced, emphasizing the imperative 
need of a control scheme to ensure good performance. 
Although this characteristic can be extrapolated for all 
configurations, further analyses of the remaining configu-
rations must be carried out.
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