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One-Dimensional Constitutive Behavior of Shape
Memory Alloys: Thermomechanical Derivation
with Non-Constant Material Functions and
Redefined Martensite Internal Variable

L. C. BRINSON*
Institut fiur Aeroelastik der DLR
Bunsenstrafle 10
3400 Gottingen
Germany

ABSTRACT: A one-dimensional constitutive model for the thermomechanical behavior of shape
memory alloys is developed based on previous work by Liang and Tanaka. An internal variable ap-
proach is used to derive a comprehensive constitutive law for shape memory alloy materials from
first principles without the assumption of constant material functions. This constitutive law is of
such a form that it is well suited to further practical engineering applications and calculations.

A separation of the martensite fraction internal variable into temperature-induced and stress-
induced parts is presented and justified, which then allows the derived constitutive law to accurately
represent both the pseudoelastic and shape memory effects at all temperatures. Several numerical ex-
amples are given that illustrate the ability of the constitutive law to capture the unique thermome-
chanical behavior of shape memory alloys due to their internal phase transformations with stress and

temperature.

INTRODUCTION

HAPE memory alloy (SMA) materials have been re-
Sceiving increasingly more attention and study since the
discovery and first publication of the shape memory effect
by Chang and Read in 1951. These materials have been
shown to exhibit extremely large, recoverable strains (on the
order of 10%), and it is these properties as functions of tem-
perature and stress which allow SMAs to be utilized in
many exciting and innovative engineering applications. At
present, SMA materials are being investigated for diverse
applications: the driving force in heat cycle engines (Banks
and Weres, 1976); the material for implantable Harrington
rods for correction of scoliosis; orthodontic wire capable of
exerting constant load even after large strains, making fre-
quent readjustments unnecessary (Funakubo, 1987); and in-
tegrated actuator/sensor fibers in special composite sys-
tems for active control of dynamic and structural behavior
(Rogers, Liang et al., 1989).

For all of the various applications, it is necessary to have
a precise understanding of the mechanical behavior of
SMAs in order to fully develop and exploit their potential.
The aforementioned applications of SMAs in intelligent
material systems all utilize the SMA material integrated into
the structure (or, in some cases, as the entire structure),
such that the SMAs provide control for the system and are

*Guest Scientist. Current address: Department of Mechanical Engineering, North-
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force bearing members. This high degree of integration of
control materials with the structure is a desired goal and ap-
proaches the highest level of intelligent systems (Wada, Fan-
son et al., 1990). However, it simultaneously emphasizes
the need for comprehensive material models of shape mem-
ory materials that are capable of both accurately represent-
ing the thermomechanical behavior and have mathematical
expression in a form that is amenable to incorporation into
other engineering tools, such as finite element procedures
or control analysis programs.

Many scientists and engineers have contributed to the vast
available literature on the experimental behavior of shape
memory alloys. Likewise, there are several approaches that
have been developed to address the constitutive behavior of
these materials (anaka, Osaka, et al., 1982; Falk, 1983;
Achenbach and Muller, 1985; McNichols and Cory, 1987;
Achenbach, 1989; Liang, 1990). This article will focus,
however, on the work presented separately by Tanaka and
Liang, which is a unified constitutive law meeting the re-
quirements laid out above (Tanaka, Osaka, et al., 1982;
Tanaka and Iwasaki, 1985; Tanaka, 1986; Liang, 1990;
Liang and Rogers, 1990). In the following sections, back-
ground material and a brief summary of the thermomechan-
ical derivation will be presented. A refined definition for the
martensite material fraction will be introduced and the con-
sequences discussed. The constitutive law derivation for a
special case of non-constant material functions will be pre-
sented and finally, several brief numerical examples using
the newly derived constitutive law and redefined martensite
term will be examined.
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230 L. C. BRINSON

MECHANICAL BEHAVIOR OF
SHAPE MEMORY ALLOYS

Background

From a macroscopic point of view, one can separate the
observable mechanical behavior of SMAs into two major
categories: the shape memory effect (SME), in which a
specimen exhibits a large residual (apparently plastic) strain
after loading and unloading that can be fully recovered upon
raising the temperature of the material; and the pseudo-
elastic effect, in which a specimen achieves a very large (ap-
parently plastic) strain upon loading that is then fully
recovered in a hysteresis loop upon unloading.

This surprising ability to fully recover large strains (on
the order of 10%) i  result of a martensite phase transfor-
mation occurring in wie SMA material according to certain
environmental and boundary conditions. In a stress-free
state, an SMA material at high temperatures exists in the
parent phase (usually a body-centered cubic crystal struc-
ture, also referred to interchangeably in this paper as the
austenite phase) and upon decreasing the material tempera-
ture, the crystal structure undergoes a self-accommodating
crystal transformation into martensite (usually a face-
centered cubic structure). The phase change in the un-
stressed formation of martensite from austenite is referred to
as “self-accommodating” due to the formation of multiple
martensitic variants and twins which prohibits the incur-
rence of a transformation strain. The martensite variants,
evenly distributed throughout the material, are all crystallo-
graphically equivalent, differing only by habit plane indices,
and each variant consists of two twin-related martensites. It
is exactly this effect of self-accommodation by twinning
which subsequently allows shape memory alloys to exhibit
the large reversible strains with stress (Funakubo, 1987,
Wayman and Duerig, 1990).

In the stress-free state, an SMA material can be con-
sidered to have four transition temperatures, designated
as M;, M,, A,, A;: Martensite Finish, Martensite Start,
Austenite Start, and Austenite Finish, respectively. Al-

°A
~— L
heat €
(a)

T<Ag, beginning with 100% twinned martensite

though there are materials in which 4, < M., and the basic
concepts laid out in this treatise generally apply to this case,
for clarity of explanation only the so-called “Type I” mate-
rials in which M; < M, < A, < A, will be considered.
Note that a change of temperature within the range M, <
T < A, induces no phase changes and both martensite and
austenite can coexist within M, < T < A4;.

Given these four transformation temperatures and the
concepts of self-accommodation, one manifestation of the
shape memory effect (SME) can be explained as follows.
Consider martensite, formed from the parent phase cooled
under stress free conditions through M, and M; at any tem-
perature less than Austenite Start. This material has multi-
ple variants and twins present, all crystallographically
equivalent, but with differing orientation (different habit
plane indices). When a load applied to this material reaches
a certain critical stress, the pairs of martensite twins begin
“detwinning” (conversion) to the stress-preferred twins.
Subsequently, the multiple martensite variants begin to con-
vert to a single variant, the preferred variant determined by
alignment of the habit planes with the axis of loading. The
conversion between different martensite variants can also be
described to be a twinning deformation process in the mate-
rials science definition of the term (Funakubo, 1987; Way-
man and Duerig, 1990). During this process of reorienta-
tion, the stress raises very slightly in comparison to the
strain that is achieved, creating a stress-strain curve as
shown schematically in Figure 1(a). As the single variant of
martensite is thermodynamically stable at T < A,, upon
unloading there is no reconversion to multiple variants and
only a small elastic strain is recovered, leaving the material
with a large residual strain. The detwinned martensite mate-
rial can, however, recover the entire residual strain by
simply heating above the A, temperature: the material then
transforms to the parent phase (which has no variants) and
recovers its original geometric configuration, thus creating
the shape memory effect [indicated by the arrow in Figure
1(a)]. See also Figure 2 for an illustrative sketch of the
SME.

To explain the pseudoelastic effect, consider the SMA en-

s
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)

M<T<A (, beginning with 100% austenite

Figure 1. Schematic of stress-strain curves of shape memory alloy mechanical behavior. The nonlinear loading portion of the curves represents
detwinning of martensite variants or transformation of austenite to martensite. In (c) and (d) the nonlinear portion upon unioading is due to the
inverse transformation to austenite. In (e) the maximum stress has exceeded the critical stress for plastic slip and thus there remains irreversible

plastic strain upon unioading.
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Figure 1 (continued). Schematic of stress-strain curves of shape memory alloy mechanical behavior. The nonlinear loading portion of the
curves represents detwinning of martensite variants or transformation of austenite to martensite. In (c) and (d) the nonlinear portion upon
unloading is due to the inverse transformation to austenite. In (e} the maximum stress has exceeded the critical stress for plastic slip and thus

there remains irreversible plastic strain upon unloading.

tirely in the parent phase (with 7 > M,). When stress is ap-
plied to this material, thermodynamic considerations indi-
cate that there is a critical stress at which the crystal phase
transformation from austenite to martensite can be induced.
However, due to the presence of stress during the transfor-
mation, specific martensite variants will be formed prefer-
entially and at the end of transformation, the stress-induced
martensite will consist ideally of a single variant of com-
pletely detwinned martensite. If T = A;, during unloading
of the material a reverse transformation to austenite occurs
because of the instability of martensite at these temperatures
in the absence of stress. This recovery of high strain values
upon unloading yields a characteristic hysteresis loop,
which is illustrated in Figure 1(d), and is known as pseudo-
elasticity (Delaey, Krishnan, et al., 1974; Perkins, Edward,
et al., 1976; Funakubo, 1987). If A, < T < A, the result

cool (6=0)

_______________________________ -

(a) T<Mg (b) G>Crit (c) 0=0 (@) T>Ag

Figure 2. Schematic of detwinning and phase transformation. In
(a) twinned martensite, in (b) and (c) detwinned martensite, and in
(d) austenite.

upon unloading is a partial pseudoelastic recovery; the re-
maining residual strain can be fully recovered after heating
the material above A, [see Figure 1(c)]. If T < A,, then
there is no pseudoelastic recovery and the result is a differ-
ent manifestation of the shape memory effect [Figure 1(b)].

There exists at any temperature a critical stress for irre-
versible plastic slip to occur in the material (this critical
stress value decreasing with increasing temperature), and if
this stress is exceeded, then the residual strain can no
longer, of course, be recovered by unloading or by heating
[see Figure 1(e)]. Note that in some SMA materials, it is
also possible for the material to undergo transformation
from one martensite to another crystallographically differ-
ent form of martensite with stress. These types of crystal
transformations between martensites are not considered
here.

Development of the Constitutive
Law from Thermodynamics

Here we review Tanaka’s approach to the derivation of the
constitutive law of shape memory materials. Considering a
one-dimensional SMA material undergoing transformation,
from principles of thermodynamics the energy balance and
Clausius-Duhem inequality can be expressed as

0= oL+ 20 0

eU — oL + 5~ —eq = (1a)
b q a qsur
QS—QT+ax(T)20 (1b)

in the current configuration (Tanaka, 1986), where U, 4, ¢,
and g, represent the internal energy density, the Cauchy
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stress, the heat production term and the heat flux, respec-
tively, and S, 7, x and g represent the entropy density, tem-
perature, the material coordinate and the density in the
current configuration, respectively. Following Tanaka’s ar-
gument, it is assumed that the thermomechanics of an SMA
material are fully described by the set of variables (¢,7,£),
where e is the Green strain and £ is an internal variable rep-
resenting the stage of the transformation. The definition of &
is the martensite fraction of the material, which varies from
zero to one with unity representing 100% martensite, and its
value is governed by temperature and stress, this relation-
ship given in the transformation kinetics section.

By introducing the Helmholtz free energy & = U — TS,
inequality [Equation (lb)] can be rewritten in the reference
configuration as

29) 99\ 08,
(a_go ae)e_ (s+ aT)T_ "

—quF ' 55 =0 2)

QoT

where o is the second Piola-Kirchhoff stress, F is the defor-
mation gradient, and g, the density and X the material coor-
dinate in the reference configuration.

A sufficient condition for Equation (2) to hold for every
choice of ¢, T, their respective coefficients must vanish,
thus yielding

P (e.£,T)

0= Qo = a(e.t.T) (3a)
0P

S = ~ar (3b)

Equation (3a) is then the mechanical constitutive equation
of the material.

Constitutive Law with Constant Material Functions

For later reference, we introduce here Liang’s constitutive
model of shape memory alloys derived from Equation (3a).
By differential calculus, one can write Equation (3a) as

do

do
do = —‘de + —dE ——dT )

23
leading to the most general equivalent expression
do = D(¢,t,T)de + Q(e,£.T)dE + O(e,£,T)dT (5)

where the material functions are defined by

) 0*d
D(e,£.T) = Qg Q£ T) = Qorag’
*’®
O(e,tT) = Q357 (6)

From the form of the incremental constitutive law [Equa-
tion (5)], the function D(e,£,T) is representative of the
modulus of the SMA material, Q(e,£,7) can be considered
the “transformation tensor”, and O (¢,£,T) is related to the
thermal coefficient of expansion for the SMA material. If
these material functions are all assumed to be constants,
then the constitutive relation can be easily derived as

0 — 0o =D(e — ) + Q& — &)+ O(T — Ty
@)

where (0y,60,£0, 7o) represent the initial state (or initial con-
ditions) of the material.

[t is important to note here that the application of a
specific material restriction enforces a relationship between
the Young’s modulus and the transformation tensor of
SMAs. The maximum residual strain of an SMA is a ma-
terial constant, ¢,. Considering Figure I(b), ¢, can be
achieved by converting all of the original austenite to com-
pletely detwinned martensite, thus going from a state of
¢ = 010 £ = 1. Upon unloading, the maximum residual
strain remains until the temperature is increased above A,.
Using initial conditions of (o, = ¢ = & = 0) and final
conditions of (60 = 0, ¢ = ¢, £ = DwithT = T, (M, <
T < A,) in Equation (7), one obtains the necessary rela-
tionship

Q= _GLD (8)

Transformation Kinetics

The phase transformation between austenite and martens-
ite as a function of temperature and stress is governed by
chemical free energy as the driving force. A thorough devel-
opment of the theory of transformation kinetics is contained
in work by Funakubo (1987) and Warlimont, Delaey, et al.
(1974); a brief description is offered here. A form of the
Clausius-Clapeyron equation

do _ _AH

daT To € (9)

can be derived from basic thermodynamic principles to de-
scribe the relationship between temperature and transforma-
tion stress for a single crystal of an SMA material, where ¢
is the transformation strain and A H represents the change in
enthalpy between the martensite and austenite phases at the
temperature 7,, at which both phases are in equilibrium
undernthesstressno:  Theoretical studies examining phase
equilibrium and transformation kinetics have also developed
expressions for the martensite fraction as a function of free
energy and temperature. Liang and Rogers (1990) have de-
veloped an empirically based cosine model to represent the
martensite fraction as a function of stress and temperature
during transformation, which agrees well with experimental
findings. Because this last model contains only measurable
engineering variables, it can be practically implemented and
is used as a basis in this study.
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According to Liang’s model, the transformationsfromnthe
parentsphasestosmartensite can be described by

1 — & 1 0
g:—zg cos [aM(T—M,—L)]++T‘E

M

for Cu(T — M) < 0 < Cu(T — M) (10)

while the reverse transformation from martensite to austen-
ite can be expressed as

£=%{cos [a,, (T—A,— é—)] + 1

for Ca(T — Ay) < 0 < Co(T — A4,) an

where & is the fraction of the material which is martensite
prior to the current transformation, o is the applied stress, T
the temperature, and a, and a4 are defined by

™ ™

M -M T4 a4 (12)

am

The constants C, and C, are material properties that
describe the relationship of temperature and the critical
stress to induce transformation, o, (see Figure 3).
Although experimental results for the critical stress values
at the onset and end of transformations rarely yield pre-
cisely linear results, it is nonetheless possible to adequately
represent the trend for the transformation stresses as linear
functions of temperature. For example, at temperatures
above M., the stress necessary to induce martensite from
austenite increases with temperature and one can define a
constant value for C,. It is often assumed that C,, and C,
equal one another and have a continuously constant value
over all temperature ranges, as illustrated in Figure 3.

Gcril

-

Mf MS AS A[

Figure 3. Critical stresses for transformation as functions of temper-
ature. C,, and C, are the slopes of the o, (T) curves for the austen-
ite to martensite transformation and the reverse transformation, re-
spectively. Here, C,, = C, (after Liang, 1990).

A SEPARATION OF THE MARTENSITE FRACTION
INTERNAL VARIABLE AND CONSEQUENCES

Until this point, the internal state variable for the mar-
tensite material fraction, £, has been considered to simply
represent the percentage of the material transformed to
martensite. A separation of this variable into two parts is
proposed here based on the micromechanics of an SMA ma-
terialnLet £ be further defined by

E=&+ & (13)

where &; represents the fraction of the material that is
purely temperature-induced martensite with multiple vari-
ants, and & denotes the fraction of the material that has been
transformed by stress into a single martensitic variant. With
such a definition we will show that it is possible to derive a
constitutive relation similar to Equation (7) that is valid for
temperatures below M, as well as above. That is, the
rederived constitutive equation can represent the shape
memory effect starting from martensite as well as pseudo-
elasticity and the SME starting from 100% austenite.

To quickly illustrate the shortcomings of not distinguish-
ing between £ and &, consider the application of consti-
tutive Equation (7) in the case of T < M;. At such tempera-
tures, the material is entirely in a martensitic phase. For
simplicity, take the initial conditions to be g, = ¢ = 0,
£ = | and hold the temperature constant (7 = To); since
T < M;, ¢ = 1 regardless of the stress and strain values
and Equation (7) immediately yields for arbitrary o and e
the expression

o=De+Q-(1 — 1)+ 6T -Ty
(14)
o = De

which is a purely linear elastic stress-strain relation and ob-
viously cannot represent the behavior typical of the shape
memory effect shown in Figure 1(a). In effect, Equation (7)
cannot capture SMA material behavior at any temperature
below Martensite Start, nor at higher temperatures when
any temperature-induced martensite is present. In the case
of the simple example just given, recall that at such a tem-
perature, the shape memory effect is caused by conversion
between martensite variants, not the transformation of
austenite to martensite. With the martensite internal variable
redefined to separate the converted (or detwinned) martens-
ite fraction of the material from the temperature-induced,
fully twinned martensite fraction, the rederivation of the
constitutive law will contain these separate contributions
and consequently be able to capture the SME of conversion
of martensite twins as shown in the next subsection.

It is important to note that this separation of £ into two
distinct components accurately represents the microscopic
behavior of the material. For the case of 100% austenite
prior to loading, & = O and £ = & represents the amount
of material transformed by application of stress from austen-
ite to martensite, since the martensite that forms will neces-
sarily be of a single preferred variant. When the material is
totally (or partially) martensitic before stress application,
then &; accounts for the purely temperature-induced mar-
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234 L. C. BRINSON

tensite consisting of multiple variants and &; increases in
value only if sufficient stress is applied to convert multiple
variants into a single variant (or to transform any austenite
present into a single martensite variant).

Another point of note is that the maximum residual strain,
€., is found to be reasonably constant at all temperatures
below A; (Perkins, Edwards, et al., 1976), including
T < M,. This will allow the transformation tensor, {2, to re-
tain its current relationship to the modulus and the maxi-
mum re81dual strain at all temperatures.

Modification to the Constitutive Law
with Constant Material Functions

With the introduction of £ = & + & into the consti-
tutive Equation (3a), it follows immediately from differen-
tial calculus that

do

£dET 3 dT (15)

do do
do = Zdﬁ + a—&dfs

which can be written
do = Dde + Qsdés + Qrdér + 6dT (16)

once again assuming the material functions, D, Qg, @, O,
to be constants. With the initial conditions of (g, €, £so,
£ro, To), solving the differential form of the constitutive
equation yields

0 — 00 = D(e — €) + Qs(&s — E50)
+ Qr(¢r — &r0) + O(T — Ty a7

Application of the material restriction of the case of maxi-
mum residual strain with the material initially 100% austen-
ite, £&50 = 0 and &7, = O, and the remaining conditions
(0o =€=0), (=0, e =¢, & =1, & = 0) and
T =To(Ms < T < As) [as for Equation (8)] provides the
relationship

QS = _ELD (18)

Considering the case of maximum residual strain with the
material initially 100% undeformed martensite, &5, = 0
and {70, = 1, and remaining conditions identical to the pre-
vious case (except here the temperature constraint can be
relaxed to T < A,) results in the restriction that

2 =0 (19)

Thus, the thermomechanical constitutive law with con-
stant material functions consistent with the separation of the
stress-induced and temperature-induced martensite frac-
tions becomes

g — 0o = D(e — &) + Q(ES - fso) + e(T - To)
(20)

dropping the subscript on {; so that again @ = —¢,D. Ob-
viously, this equation is capable of capturing the shape
memory effect at all temperatures and with any percentage
of initial twinned martensite. Applying the same initial con-
ditions as in the example for Equation (14), with the clarifi-
cation that £ro = 1 but &, = 0, yields

which can accommodate the necessary nonlinear stress-
strain behavior.

Transformation Equations and Transformation Stresses

The transformation equations of Liang [Equations (10)
and (11)], with critical stresses as defined in Figure 3, must
now be modified to accommodate the definition of £, and &
and to allow for the shape memory effect at temperatures
below M,. According to Delaey, Krishnan, et al. (1974), the
critical stress for conversion of martensite variants below M,
is a constant** and thus can be considered to be a material
property along with the C,, and C, parameters, which re-
main valid for 7->M;: The variation with temperature of
the critical stresses for transformation consistent with the
separation of £ into two components is shown schematically
in Figure 4. Experimental results by Dye (1990) and others
show a slight increase in o, with decreasing temperature
below M, (indicated by dotted lines). Such a variation could
be easily incorporated into this model, however, for simplic-
ity we currently assume the critical stress values below M,
to be constant and denoted by ¢ and ¢f for the critical
stresses at the start and finish of the conversion of the mar-
tensitic variants. It might also be possible to predict the
value of ¢, for reorientation of margensite twins from the-
oretical work by Achenbach and Muller (1985), who have
developed a model based on the potential energy necessary

crit

cr Joreeae

cr [

—
-

Mp M As  Af T

Figure 4. Critical stresses for transformation or martensite twin con-
version as functions of temperature. Dotted lines indicate possibility
for non-constant values of o’ and of’.

**[f the elastic modulus of the martensite phase is taken to be a constant, which is the
case throughout this paper.
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One-Dimensional Constitutive Behavior of Shape Memory Alloys 235

to overcome the chemical energy barrier for conversion of
twins.

The evolution equations for calculation of the martensite
fractions according to temperature and stress, recalling that
£ = & + &, can now be represented in conjunction with
Figure 4 ast:

CONVERSION TO DETWINNED MARTENSITE

for T > M,and 0¥ + Cu(T — M,) < 0 < ¥
+ Cu(T — M)tt:

f _ 1 - Eso (s
s 2 cos o — of
1 +
X [0~ of — Cu(T — Ms)]‘ + TESO
(22a)
ETO
Er = bro — T (& — £&so) (22b)
1 - $so
forT < M;and 0f < 0 < o}
1 - Eso w . 1 + Eso
& = > cos OZ_,_U;{(U—U,) +T
(22¢)
£ro
fr = Ero - __(Es - fso) + Arg (22d)
1 — &5

where, if M, < T < M,and T < T,

1 — &ro
Are = —%{COS law(T — My} + 1} (22¢)

else, A, = 0
CONVERSION TO AUSTENITE

for T > A, and Ci(T — Af) < 0 < Cu(T — A,):
_b o
£ = > |cos a. (T — A, — c. + 1 (23a)

£so
& = &so — E(EO -9 (23b)

+Note that in the cases of g, < C4(To — A.) for transformation to austenite or
0o > 6¢" or g, > ¢t + Cpn(To — M,) for transformation to martensite, the
values of &, and £, used in Equations (22) and (23) must be the values £ and &5
would have had at the beginning of the transformation region for consistency.
+Note that if ¢" = 0 and 6y = C, (M. — M,). then the stress range for conver-
sion to detwinned martensite is Cy {7 — M) < 0 < C,(T — M;) as before and
the expression for & reduces to

I — & T M a 1+ &
& = > cos | dar -M - + 2

as expected. Such would be the case for materials in which the curve for the critical
stress for the start of the transformation to martensite passes through M, at zero
stress.

&r = §r0 — %(Eo -5 (23c)

0

Note that these transformation equations [as with Equa-
tions (10) and (11)] are based upon an array of experimental
results performed on a particular SMA material. Although
these curves agree well with the behavior of a wide range of
SMAEs, it is possible that a different set of equations would
be better suited to a different particular alloy. In addition,
there may be certain physical processes in an SMA for
which Equations (22) and (23) would need modification.
For example, there is evidence that reloading an SMA after
partial unloading leads to a slightly different path in the in-
ternal loop and the resumed hysteretic behavior than pre-
dicted by these equations. Thus, although the predictions of
Equations (22) and (23) would be qualitatively correct in
such partial hysteresis loops, if the precise path followed in
such excursions is of importance to a particular application,
then Equations (22) and (23) would need to be expanded by
a model which accounts for memory of return points (points
at which transformation is reversed). Recent work by Ortin
(1991) investigates the use of a Preisach model on stress in-
duced SMA transformations which could be utilized in con-
Jjunction with the results in this paper.

Sufficient experimental evidence is not available to distin-
guish between the critical stresses for transformation of
austenite to martensite and the critical stresses for conver-
sion of martensite twins at a given temperature. At tempera-
tures in the range M; < T < A, it is always possible to
have some austenite present, as well as some unconverted
martensite twins. If a distinction exists between the transfor-
mation and conversion stresses, the transformation Equa-
tions (22) would have to be altered accordingly. Since the
stress-strain curves of shape memory alloys do not generally
exhibit two distinct transformation regions (excluding crys-
tallographic martensite-martensite transformations), it is
reasonable to assume that the transformation and conversion
stresses are identical for the purposes of this paper.

CONSTITUTIVE LAW WITH NON-CONSTANT
MATERIAL FUNCTIONS

The constitutive Equation (20) with constant material
functions is quite trivial to derive from the incremental con-
stitutive Equation (16). However, experimental evidence on
the modulus of SMA materials indicates clearly that the
Young’s modulus, D, has a strong dependence on the mar-
tensite fraction of the material, £. A reasonable assumption
for the modulus function of an SMA material, as suggested
by Liang (1990) and Sato and Tanaka (1988) is

D(.{&T) =D =D. + ¢D. — D) (24)

where D,, is the modulus value for the SMA as 100% mar-
tensite and D, is the modulus value for the SMA as 100%
austenite. The ratio of the magnitudes of D, to D,, usually
have a value of 3 or greater. Firmpexperimentalevidencerof
the variation of the remaining material properties with the
state-variablessistlackingy Thus, here the derivation of the
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constitutive law for this specific case of a linear variation of
the modulus with martensite fraction is presented. The pro-
cedure presented herein can be followed for other cases as
future experimental evidence indicates.

Because the condition of maximum residual strain re-
quires that the transformation tensor be directly related to
the modulus in the case of constant material functions,
for the case of D a function of the martensite fraction
of the material, it is reasonable to assume that Q is also a
function of the martensite fraction. Based on the definition
of D(§), to obtain a form for the transformation tensor,
expand @ in a Taylor Series about &, and neglect higher
order terms:

Q) = &) + (£ - L) (25)

At a fixed value of £, &, where £ is a constant, we can utilize
the Q-D relationship for the @ = constant and D = con-
stant case [Equation (18)], leading to

Q(Eo) = —e.D(&) (26)

Substituting this relationship and Equation (24) into Equa-
tion (25) and simplifying, one obtains

Q) = —eD() + (& — &)[—eD'(¢)] (27a)
which upon expansion and cancellation of terms reduces to
U = —aD. — 4D, — D,) (27b)

or equivalently

Q&) = —aD® (27¢)

The material function O (¢,£,7) is assumed to remain a
constant in this study due to its necessarily relatively small
value [five orders of magnitude less than D(§)]. Also, ac-
cording to the derivation for constant material functions, we
assume that @, = 0.

Utilizing these material function definitions, the general
differential form of the constitutive equation analogous to
Equation (16) can be rewritten as

do = D(§)de + Q&)d& + ©dT (28)

Performing a partial integration solution to this differential
equation

sdo = s[D‘z + £(D,, — D))de

- SEL[Da + &(D.. — D.))dEs + SedT
(29a)

one obtains

0+ K=D,¢e + (D, — D)te + C(§) — e,.D.E.
5+ we]
— (D, — D,) 5 + & & | + OT (29b)

where K is an arbitrary constant and C(§) is an arbitrary
function of £. Rearranging terms and recognizing the expan-
sion

D(®)és = D.&s + (D, — D2)EF + (D — Du)érés
(29¢)

Equation (29b) simplifies to

o+ K =D(&e + Q& + OT

£

2 + C%) (29d)

+ e.(D,, — D.)

which is the general solution to the governing differential
Equation (28). To obtain a particular solution, first apply
initial conditions: Equation (29d) must hold at the initial
state (0o,€0,&0.70). Thus, the unknown constant, K, is deter-
mined

K= D(Eo)fo + 9(50)&0 + 6T,

+ (D, — D,) % + C(&%) — 0o (30)

and Equation (29d) then becomes

0 — o = D(&e — D(&o)eo + UOEs — D(6o)so

+ (T ~To) + e.(D,, — D,,)[% - %

+ C(® - C&) 3

To determine the unknown function C(§), consider again
the specific material restriction of residual strain in shape
memory alloys. Here we consider the general case of resid-
ual strain such that ¢, < ¢, upon unloading to zero stress
as in Figure 1(c). (Note that €., < ¢, can also be achieved
by unloading the material before £ achieves a value of 1.)
Using the definition of maximum residual strain, and the
micromechanics concepts governing the value of the mar-
tensite fraction, it follows that

€rev = €r&s (32)

where the subscript “res” indicates the residual value of
strain after unloading to o = 0. Applying the simplest case
of residual strain to Equation (31), take an initial state of
(0o = €0 = £50 = 0) and a final state of (¢ = 0, ¢ =
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€. = €.&s, &) with T = T, (and consequently &, = £74).
This yields

0 = D®erts + QHEs

&%

+ GL(Dm - Da) 2

+ CH - CO

which, upon recalling the definition [Equation (27c)], im-
plies

£3

C® = —ee(Dn = Do) 5 (33)

And consequently the final constitutive equation for shape
memory alloy behavior with material functions that are
linear in £ is

0 — 0o = D(He — D(&)eo + Q(E)Es
— Q&)éso + O(T — To) (34)

Following the derivation technique outlined here, it would
be possible to obtain the constitutive relation for SMAs with
material properties that are more general functions of the
martensite fraction or are functions of the other independent
variables. It is important to note that the constitutive law
[Equation (7) or (20)], derived assuming that the material
functions D, @, O are all constant, can then not subse-
quently be utilized with non-constant material functions.
With any change in the functionality of the material proper-
ties with the state variables, the constitutive law must be
rederived from the basic differential form.

NUMERICAL EXAMPLES

In this section, the constitutive Equation (34) coupled
with transformation Equations (22) and (23) is utilized to
calculate the thermomechanical response of shape memory
alloys in several cases. Stress-strain curves representative of
the shape memory effect and the pseudoelastic effect are
given first. Since this model is most closely based on previ-
ous work by Liang and Rogers, two effects clearly illustrated
in their work, typical of shape memory alloys in general,
will also be presented here: free strain recovery and re-
strained recovery. In all cases, the numerical results agree
well with experimental observations.

The material properties for the shape memory alloy in the

following examples are taken from data given by Dye (1990)
and Liang (1990) on a nitinol alloy (NissTi). The values for
the necessary material properties are listed in Table 1. Note
that the value for C,, is taken from the experimental curves
for critical transformation stress given by Dye, which corre-
spond well with Figure 4, i.e., the curve does not pass
through the Martensite Start temperature at zero stress. The
experimental data indicate a slight increase in the values of
critical transformation stress at temperatures below M;, but
o¢ and o are taken to be constants here. Additionally, al-
though the experiments show a decrease in the maximum
residual strain at temperatures above A4y, this decrease is not
considered in these examples.

Constitutive Equation (34), transformation Equations
(22) and (23), and the data from Table 1 were utilized to
calculate the stress-strain curves of the shape memory alloy
at various temperatures. The results for a wide range of tem-
peratures are shown in Figure 5 and the results for tempera-
tures less than M, are grouped together in Figure 6. For all
of these curves, the initial value of the stress-induced mar-
tensite variable is clearly zero, indicated by lack of residual
initial strain. For temperatures above M., the initial value of
the temperature-induced martensite variable was taken to be
zero and for temperatures less than M,, the initial values of
£; were proportional to temperature as indicated by Equa-
tion (22e). With these initial conditions, only the curve for
T = 5°C is representative of a fully martensitic specimen
before loading. At 7 = 12°C and T = 15°C, the material
is partially martensite and partially austenite prior to ap-
plication of stress, and at all higher temperatures the mate-
rial is fully austenite. The subsequent different initial values
of the modulus functions are manifested in the difference in
slope of the linear loading portion of the stress-strain
curves. The slight variation of slope of the unloading por-
tion of the curves in Figure 6 arises from small austenite
contributions to the modulus at T = 12°C and T = 15°C,
since the material has not completely converted to de-
twinned martensite at the final strain shown here. See Fig-
ure 7 for comparison, where stress-strain curves extending
to 100% transformation for two temperatures are given. In
Figure 7, the material transforms completely to detwinned
martensite at both temperatures, after which the stress-
strain curve again becomes linear with a slope of D,,. Upon
unloading the maximum residual strain ¢, is achieved. Due
to the assumed constant values of ¢ and o5 in this exam-
ple, the stress-strain curves for materials with £ = 1 prior
to loading will be identical regardless of temperature and
will coincide with the curve for T = 5°C.

The curves at temperatures less than Austenite Start are
all indicative of the shape memory effect: the material loads

Table 1. Material properties for the nitinol alloy used in
the following examples [Dye, 1990; Liang, 1990].

Transformation

Transformation Maximum

Moduli Temperatures Constants Residual Strain
D, = 67 x 103 MPa M, = 9°C Cy = 8 MPa/°C e, = 0.067
D, = 26.3 x 103 MPa M, = 18.4°C C, = 13.8 MPa/°C
© = 0.55 MPa/°C A, = 34.5°C ¢¥ = 100 MPa
A, = 49°C ¢ = 170 MPa
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Figure 5. Stress-strain curves illustrating the pseudoelastic effect and the shape memory effect.

elastically, then undergoes conversion of martensite variants
and/or transformation of austenite to deformed martensite
during the nonlinear portion of the stress-strain curve, and
finally unloads elastically (with no pseudoelastic recovery),
incurring a residual strain. To complete the shape memory
effect for the curves at temperatures below A,, the material
temperature must be raised above the Austenite Finish tem-
perature at zero stress for the material to recover all of the
residual strain. Equations (23a) and (34) together provide
for this condition (Figure 9). The pseudoelastic effect is
demonstrated in Figure S by the curves for T = 40°C and

T = 60°C. Since the lower of these two temperatures is less
than A;, there is only a partial pseudoelastic strain recovery
on unloading and the material consists of both detwinned
martensite and austenite after unloading. At T = 60°C,
above A, the material exhibits a complete hysteresis loop
during the procedure: the material is austenite prior to load-
ing, transforms to detwinned martensite during loading and
completes the inverse transformation to austenite upon
unloading.

Figure 8 illustrates the change in the two portions of the
martensite fraction while loading the material above the

160 T T

140

120

100

Stress (MPa)

L

o=

—
N

3
Strain (x10 )

Figure 6. Stress-strain curves illustrating the shape memory effect.
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Figure 7. Stress-strain curves to maximum residual strain, e .

critical transformation stress. This figure shows the case of
T = 5°C where the material is initially 100% temperature-
induced martensite and then begins conversion to stress-
induced martensite after the critical stress is exceeded. Note
that here the sum & + £r is always identically 1 since the
test temperature is below M;.

Figures 9 and 10 demonstrate free strain recovery of the
material, in which the material recovers an initial residual
strain at zero stress by raising the temperature above A;.

This case is then illustrative of the completion of the SME
for curves in Figures 5 and 6. The example shown here is of
a specimen at T, = 20°C with &7 = 0.5 and ¢ = 0.02;
€50 is then defined by e,/e.. As the temperature is raised
from T,, the inverse transformation to austenite begins and
the material starts to recover the residual strain at A,. At A,
this transformation is complete and the strain and both mar-
tensite fraction variables are zero. Note that in Figure 1C
& = & + &r at all times as required.

Martensite Fraction

80 100 120 140 160

Stress (MPa)

Figure 8. Martensite fractions vs. stress: &, = 1, &, = 0, T = 5°C from stress-strain analysis

with o, = ¢, = 0, loading portion only.
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Figure 9. Strain vs. temperature: ¢g, = 0.02/¢_, £, = 0.5.

The final example presented here is the case of restrained
recovery in which a material with residual strain is con-
strained to maintain that deformation as the temperature is
raised through A, and A;. Figure 1l shows a material with
0.5% residual strain subjected to these conditions (e =
eo = 0.005). Because the material is restrained as the in-
verse transformation to austenite occurs, and the material
would recover the residual strain as in the last example if
unrestrained, extremely large internal stresses are incurred.
Figure 11 also shows the critical transformation stress
curves for ease of comparison. It is clear then that upon
heating, the internal stress increases rapidly during transfor-

mation to austenite, after transformation is complete the
stress remains essentially constant, and as the specimen is
cooled the internal stress decreases rapidly in the region of
austenite to martensite transformation. Note that the hyster-
esis loop here starts and ends with a definite value of stress;
this value is the amount of stress required at T = 20°C to
achieve a 0005 strain. The hysteresis loop can also be
calculated starting from zero stress with the same ¢,, as
shown in Figure 12; after the austenite to martensite trans-
formation reaches the original temperature 7, upon cooling,
the stress is then decreased to zero to complete the cycle.
It is important to note that all the results presented agree

1.0 T

08—

06—

Martensite Fraction

020

00

20 30

40 50 60

Temperature (°C)

Figure 10. Martensite fraction vs. temperature: &g, = 0.02/¢_, &7, = 0.5.
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Figure 11. Restrained recovery with ¢, = 0.5%, &5, = 0.046, £, = 0, o, = 128. Curves of crit-

ical stress for transformation also shown.

extremely well both quantitatively and qualitatively with ex-
perimental data on SMA materials. The one exception to
this statement is the case of restrained recovery in which,
with the current material parameters, the stress required for
100% transformation to austenite upon heating increasingly
exceeds experimental values with increasing initial residual
strain. The general characteristics of the model’s prediction
and the experimental results agree quite well, only the mag-
nitude of the maximum stress achieved differs significantly.
This discrepancy is most likely due to the experimental ma-

terial exceeding the critical stress for true plasticity before
achieving complete conversion to austenite. Experimental
measurements for restrained recovery are generally done
with .01 or .02 residual strain (detwinned martensite),
which is indeed far too large to expect that the material
could attain 100% austenite conversion without encounter-
ing plasticity. Given experimental data on the critical plastic
limits for SMAs, these could be simply incorporated into
the model so that the maximum stress for restrained recov-
ery would reflect their influence.

400 T

Stress (MPa)

Temperature (°C)

Figure 12. Restrained recovery with ¢, = 0.5%, &g, = 0.046, &, = 0, 0, = 128 and ¢,

0.5%, £, = 0.075, &1, = 0, 0, = O.
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CONCLUSION

A comprehensive one-dimensional constitutive law for
shape memory alloys has been derived from first principles
based on previous work by Tanaka and Liang. A separation
of the martensite fraction internal variable into stress-
induced and temperature-induced components was pro-
posed and introduced into the model. This subdivision is
justified by the micromechanical behavior of SMAs and is
effected here such that the stress-induced martensite fraction
represents the extent of transformation of the material into a
single martensitic-variant oriented with the direction of
loading. With this distinction it was shown that the model
can capture both stress-induced martensitic transformation
at temperatures above Austenite Start with accompanying
pseudoelastic behavior and the shape memory effect asso-
ciated with conversion of martensite variants (or transfor-
mation of austenite to martensite) with applied stress at all
temperatures.

In this paper, the constitutive law was derived for the case
of specific material functions suggested by current experi-
mental evidence. The method, however, is extensible to ma-
terial properties which are general functions of the state
variables. For example, if the material properties for certain
SMA materials are found to differ not only for the austenite
and martensite phases, but also for twinned and detwinned
phases, the separation of the martensite variable fraction
presented in this paper will allow such properties to be in-
cluded in the constitutive description of the material.

In general, the derivation method presented here can be
followed to incorporate any new experimental evidence into
the constitutive law as such evidence becomes available.
The current model is also easily expanded according to new
experimental findings for critical conversion and transfor-
mation stresses. It is most important to realize that the basic
constitutive law must be rederived from the differential form
with each change in the expression of material functions or
state variables.

The current model exhibits the desired characteristics
stated in the Introduction for material characterization: this
model accurately represents shape memory material behav-
ior, uses common engineering variables and measurable
material properties, and the mathematical formulation is
easily incorporated into further practical applications. In
addition, the formulation is easily adaptable as new infor-
mation becomes available on SMA materials in general or
certain subclasses. Ongoing investigations will extend the
model to two dimensions and pursue a finite element imple-
mentation, with the goal of using this theory as an active
part of engineering design with shape memory alloys.
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