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Abstract-The shape memory effect (SME) in alloys is due to a first order martensitic phase transition. 
Based on Landau’s theory a phenomenological model free energy function is presented which accounts 
for the SME. The mechanical and thermodynamical consequences of the model (such as stress-strain 
curves, elastic constants, and the latent heat of the phase transition) are discussed. Comparison with 
experiments yields the four involved parameters for the alloy Au,, CU,, Zn,,. 

R&tm&L’effet de mCmoire de la forme (EMF) dans les alliages rtsulte d’une transformation mar- 
tensitique du premier ordre. Nous prQentons un modele ph6nom6nologique de I’energie libre bask sur la 
thkorie de Landau et rendant compte de I’EMF. Nous discutons les cons6quences mecaniques et ther- 
modynamiques du modble (telles que les courbes contrainte-d&formation, les constantes elastiques et la 
chaleur latente de la transition de phases). La comparaison avec des ex@iences a permis d’obtenir les 
valeurs des quatre param6tres du modtle dans le cas de l’alliage Au23Cu30Zn47. 

Zusammenfassung-Der Shape-Memory Effekt @ME) in Legierungen hlngt mit martensitischen Pha- 
seniiberggngen I. Ordnung zusammen. Auf der Basis der Landauschen Theorie wird ein Ansatz fir die 
Freie Energie vorgeschlagen, der den SME liefert. Die mechanischen und thermodynamischen Konse- 
quenzen des Ansatzes (LB. Spannungs-Dehnungs-Kurven, elastische Moduln, latente Wiirme des Pha- 
seniibergangs) werden diskutiert. Der Vergleich mit Experimenten an Au,, Cu,, Znd7 liefert die vier 
vorkommenden Parameter ftir diese Legierung. 

1. INTRODUaION *Stress J 

In the last few years many alloys turned out to show 
pseudoelasticity, ferroelasticity, and shape memory 
effect. (See, for example, the review papers [l, 23. 
Applying a large load to such a body at low tempera- 
tures we get a residual strain (Fig. la). Since ferro- 
magnetic materials show the same behaviour with re- 
spect to the field and the magnetization, the alloys are 
called ferroelastic. However, upon heating the resi- 
dual strain vanishes and the original shape of the 
body is restored (shape memory effect). At higher tem- 
peratures loading does not lead to a residual strain. 
Nevertheless the stress-strain curves on loading and 
unloading differ (Fig. 1 b). In particular the body is 
very soft (rubber elasticity, pseudoelasticity). At very 
high temperatures the body behaves elastically with- 
out anomalies (Fig. lc). This remarkable behaviour of 
shape memory alloys is caused by a first order mar- 
tensitic phase transition [I, 23. 
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Both the transition as well as the similarity of the 
cl 

stress-strain curves with the field-polarization curves 
of ferroelectrics suggest a close analogy between these 
phenomena [3,4]. Guided by this analogy, the 

+ 
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author [3] presented a phenomenological Landau free 
energy function for shape memory alloys which, in a 
similar formulation, was introduced for ferroelectrics I I 

by Devonshire [S]. Fig. 1. Schematic stress-strain curves of shape memory 

The aim of this paper is to investigate the thermo- 
alloys (a) at low temperature: ferroelasticity (b) at inter- 

dynamics and the mechanics following from the pro- 
mediate temperature: pseudo-elasticity (c) at hi@ tempera- 

ture: elasticity. 
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1774 FALK: SHAPE MEMORY ALLOYS 

posed model. The results are compared with experi- 
ments. 

2. CRYSTALLOGRAPHY OF MARTENSITIC 
PHASE TRANSITIONS IN SHAPE 

MEMORY ALLOYS 

By cooling shape memory alloys undergo a mar- 
tensitic phase transition from the high temperature 
phase (austenite) to the low temperature phase (mar- 
tensite). This first order phase transition shows hyster- 
esis and can be induced by loading likewise. Typically 
the crystal structure of martensite is b.c.c. (for 
example CuZn, CuAlNi, AgCd, AuCd, CuAuZn,, 
NiTi, NiAl). The ordered b.c.c. j-phases show differ- 
ent superlattices such as CsCl (BZ)-structure, FesAl 
(DO&structure or CuaMnAl (L2,)-structure, which, 
for our phenomenological theory, are of less impor- 
tance. On cooling the b.c.c. lattice becomes unstable 
which has been pointed out by Zener [6-J. This de- 
creasing stability gives rise to a premartensitic lattice 
softening of austenitt, i.e. to a decrease of the elastic 
shear constant C’ = (C, , - C, s)/2. The low tempera- 
ture martensitic phase essentially results from austen- 
ite by a shear on { llO)-planes in (liO)-directions 
(Fig. 2), whereas the associated volume change is less 
than 0.5%[7]. For the various alloys the martensitic 
phases differ from one another by their stacking 
sequences of close packed atomic layers and by super- 
lattice structure [2] which are neglected in this paper. 
From the b.c.c. austenite we obtain 24 crystallogra- 
phically equivalent martensite twins. 

t In the following, the original variables are denoted by 
capital letters, resealed variables by small letters. 

3. THE MODEL 

In the following we examine single crystals under 
applied shear stress C in the &[liO]-direction. Con- 
sequently, we restrict ourselves to shear strain E in 
the same direction (Fig 2), which is supposed to be 
homogeneous throughout the crystal. Vanishing shear 
strain corresponds to the undeformed austenite. 
Recently the author [3] has proposed the following 
Helmholtz free energy F per volume as a function of 
shear strain E and temperature T 

F(E, T) = a@ - j?E* + (6T- y)E’ + F,(T), (1) 

where a, /I, y and 6 are positive constants depending 
on the special material. With regard to the Landau 
theory of phase transitions, E is the order parameter. 
Ansatz [l] is the simplest function which, at various 
temperatures, yields the observed stress-strain curves 
(Fig 1) of shape‘memory alloys. 

For convenience we rescale the free energy F, the 
strain E, and the temperature Tbyt 

a* 

f=s’F e= 
a 112 

0 s Er +_p; (2) 

and obtain (Fig 3) 

f(e, t) = e6 - e4 + (t + 1/4)e* + fo(t) (3) 

In resealed variables the free energy function is the 
same for all shape memory alloys. This means we 
have the theorem of corresponding states as known 
from van der Waals fluids. The properties of a special 
material are included in the converting parameters a, 

B, Y and 6. 
According to the symmetry of the crystallographic 

model (Fig. 2) f is an even function with respect to the 
shear strain e. At high temperatures (t > l/12) f has 

Austenite 

Martensi te Twins 

Fig. 2. Crystal structure of austcnite and martensite 
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Fig. 3. Helmholtz free energy f over shear strain e with 
temperature I as parameter [equation (3)]. f&f) is omitted. 

In the dotted regions the crystal is unstable. 

only one minimum with respect to e at e = 0. Conse- 

quently, if the external load vanishes, austenite is the 
only stable phase at high temperatures. For 
-l/4 < t -=z l/12 f has three minima_ In addition to 
the stable austenite A at e = 0 we have two stable 
martensite twins M+ and I’&_ at 

(4) 

At I = 0 the tbrce phases have the same free energy. 
For low temperature (t < -I/4) there are only two 

minima at e = +cu (equation 4). which represent the 
martensite twins M, and M_. 

4. STRESS-STRAIN CURVES, STRESS 
1NDUCED PHASE TRANSITION 

The shear stress Z is defined as derivative of the 

Helmholtz free energy with respect to the shear strain 
E, i.e. 

E(E, T) = dF(E, 7-)@E (5) 

Resealing by 
&2 

a=--C 65’2 

yields 

a(e,t) = i3f(e,t)/& = 6e" - 4e3 + 2(t + 1/4)e (6) 

In Fig 4 (T is plotted as a function of e for different 
temperatures t. 

The elastic shear constant is defined by 

c’ = 8FfiX2 = dC/ilE c = a0pe. 

Consequently, we have 

(7) 

c(e, t) = 30 e4 - 12 e2 + Z(t + I/4). (8 

In a stable configuration c is positive. For tempera- 
tures t > /0.35 this stability condition is satisfied for 
any strain e. In this temperature domain loading leads 
to a nearly linear increase of strain (Fig. 4a). At 
t = 0.35 we have a plateau in the stress for e = t/,,*$ 
ando = 16/(25@) (Fig. 4b). In the temperature range 
-0.25 < t < 0.35 we get stabifity only for (Fig. 6a) 

I4 < et = ( 1 (21 - 6(X)“= l’= 
5 - 3. 

> 
(9) 

Fig. 4. Shear stress u over strain e for different temperatures r [equation (6)]. Unstable 
dotted. 

regions are 
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0.5 t 

Fig. 5. Strain e over temperature t for different applied stresses (I. Unstable regions are dotted. 

or 

( 
;+ 

(21 - 6Ot)“Z “* 
(e( > e2 = 

> 30 . (10) 

For any strain which is not included in these ranges 
there does not exist a stable homogeneous state of the 
crystal (dotted region in Fig. 4). Similarly for 
t < - l/4 we have stability only for 1 et > e2 [equa- 
tion (lo)]. When we clamp the crystal in the unstable 
region of e, we get decomposition into two phases. 

For -0.25 < t < 0.35 loading of austenite gives 
rise to a phase transition from austenite A to marten- 
site M, which occurs at the latest when the boundary 
of the stable region o = a,(t) = o(e,, t) is reached 
(upper horizontal line in Fig. 4c-f, upper solid curve 
in Fig. 6b). When the whole crystal has transformed 
from A to M+ further loading leads to a nearly linear 
increase of strain in the martensitic phase. On unload- 
ing the strain of martensite decreases and the reverse 
phase transition starts at the latest at the boundary of 
the stable region u = a,(t) = u(e2, t) < al(t) (lower 
horizontal line in Fig. 4c-f, lower solid curve in 
Fig. 6b). For l/12 < t c 0.35 u#) is positive and the 
resulting stress strain curves are of the pseudoelastic 
type (Fig. 4c). For t c l/12 the stability boundary 
u,(t) is negative. Consequently unloading to zero 
stress leads to a permanent strain e, (equation 4), i.e., 
the crystal is still in the martensitic phase M+. In Fig. 
5 e,, is plotted as a function of t (curve u = 0). For 
t < l/12 the reverse transformation from M+ to A 
occurs only on reverse loading (Fig. 4d). For 
l/60 < t < l/12 the crystal transforms from the right 
martensite twin M + to austenite and on further load- 
ing from austenite to the left martensite twin M- (Fig. 
4d). For t < l/60 the phase transition on reverse load- 
ing immediately runs from the right to the left mar- 
tensite twin (Fig. 4e,f). If t c l/12 the stress-strain 
curves are of the ferroelastic type (Fig. 4d-f). 

The discussed stress-induced phase transition exhi- 
bits a hysteresis, provided that we have thermodyn- 
amic barriers to prevent an equilibrium phase tran- 
sition. In Fig. 6b the highest possible hysteresis is 
given by the distoncc of the solid lines. In practice the 

phase transition cm occur at a lower stress level, ear- 

liest at a shear stress a,(r), where the Gibbs free 

energies (section 8) of both phases arc equal. This 

condition leads to Maxwell’s rule. In a f-e-plot, the 
stress u,(t) is determined by the slope of the common 
tangent at two points of the curve (Fig. 7a). In an 
u-e-plot this value is given by a horizontal line which 
equalizes the dashed areas in Fig. 7b. The stress uj 
has been calculated numerically as a function of t 
(dashed curve in Fig. 6b). 

a) 

Fig. 6(a) Boundaries of stability in strain for martensite (e,) 
and austenite (et) plotted over temperature t. In the tem- 
perature domain -0.25 < I < 0.35 for (~1 > e, martensite 
is stable, for ) ej < eL austenite is stable, and for 

e, > ICI > e2 we have inslability. (b) Boundaries of stab- 
ility in stress plotted over tempcraturc r. For an applied 
stress larger than the lower solid curve, martensite is stable. 
For an applied stress lower than the upper solid curve, 
austenite is stable. The dashed curve gives the stress where 
the equilibrium phase transition takes place. For r > 0.35 
only austenilc is stable. [or I -c -0.25 only martensite is 

stable. 
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Fig..7. Maxwell’s rule (a) in anf-e-plot (b) in an u-e-plot. 

5. ELASTIC SHEAR CONSTANT 

The elastic shear constant c = (a/b*)C’ = 
(a/2b2)(Cll - Cl*) is given by [equation (8)] 

c(e, t) = 30 e4 - 1 2e2 + 2(t + l/4). (11) 

Of particular interest is c at the stress-free equilib- 
rium positions of austenite A at e = 0 (for t > l/4 
only) and martensite M, or M- at e = + e,(t) (equa- 
tion 4, for t < l/12 only). The result 

c*(t) = 2t + l/2 (12) 

c,(r) = 31 - 12t) + $1 - 12t)1’2 (13) 

is plotted in Fig. 8. At the stability boundary of aus- 
tenite (t = -l/4) c, vanishes, and so does cM at the 

sl:lhility boundary of martensite (I = i/12). Figure 8 
sIiows :I linear lallicc soflcning of austenite on cooling 
for which cxperimcntal evidence exists [8-I I]. 

6. ENTROPY, INTERNAL ENERGY, GIBBS 
FREE ENERGY 

The entropy is defined by 

S = -aFj?T s = - df/dt 

where S is resealed by 

S = bd/a s. 

From equation 3 we obtain 

s= -ez - df,(WdlT: (14) 

Note that s is added up by a strain dependent and a 
temperature dependent part. 

The internal energy is defined by 

where 

II = / + (t + t,)s, (13 

to = 114 + ca/b’. 

Using equation 3 we get 

u = e6 - e4 + (l/4 - t&z2 + &t). (16) 

u divides in a strain dependent and a temperature 
dependent part, too. Consequently, for different tem- 
peratures the curves u(e) look alike. The great variety 
off(e)-curves result from the term ts(e) in equation 15. 
For this reason the characteristic stress-strain re- 
lation of shape memory alloys is due to entropy and 
these alloys are called entropy elastic or rubber elas- 
tic. (In rubber, elasticity is connected with entropy, 
too). 

Gibbs free energy G (and g) is defined by 

G=F-ZE, g=f-ae (17) 

However, the corresponding variables for g are t and 
0 instead of t and e. Consequently, in equation (17) we 
have to replace e by r~ (inj(e, t), too). Since there is no 
analytical expression for e(r~, t), the replacement has to 

Fig. 8. Elastic shear constant c of austenite (A) and martensite (M) plotted over temperature t. [equa- 
tions (12, 13)]. For I > l/12 martensite is unstable, for t < -0.25 austenite is unstable. 
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Fig. 9. Gibbs free energy g plotted over stress u at different temperatures t. The curve marked by A 
applies to austenite, the curves marked by M+ and M_ apply to the right and left martensite twins, 

respectively. The curves end at the dots, where the region of stability ends. 

be done numerically. For various temperatures the 
g(u)-curves are plotted in Fig. 9. Note that there are 
three functions gMM,(a, t), gM_(b, t), and g&, t) for both 
martensite twins and austenite, respectively. They 
cannot be combined to one function g(a, t) which is 
appropriate for all the phases. In the stress domain 
where austenite and martensite are stable, to any 
value o there are two or three values of Gibbs free 
energy, one for each phase. Therefore, Helmoltz free 
energy is more convenient for describing the system. 

7. TEMPERATURE INDUCED PHASE 
TRANSITION 

A phase transition can be induced not only by 
loading at constant temperature but also by heating 
or cooling at constant load. In Fig. 5 the strain is 
plotted as a function of t for different loads 0. The 
dotted parts of the curves indicate regions with nega- 
tive elastic constant c, i.e. unstable regions. In the 
stable region the curves have a negative slope. Thus 
the strain decreases on heating, and mechanical work 
is done against the load. 

For large load (a > 16/(25$)) an instability does 
not occur. For smaller (or vanishing) load on heating 
the stability boundary of martensite is reached at 
t = t,(a) (right solid curve in Fig. 6b). Consequently, 
at the latest the phase transition from martensite to 
austenite begins at ~,(a) (right vertical line in Fig. 5). 
On cooling the stability boundary is reached only at 
f = fz(a) -z tl(a) (left solid line in Fig. 6b). The reverse 
transition from austenite to martensite latest occurs at 
f = 12(u) (left vertical line in Fig. 5). For each load 

u < 16/(25,/s) the’highest possible hysteresis is given 
by the difference of the stability boundaries tl and t, 
(Fig. 6b). The equilibrium phase transition tempera- 
ture to(a) is determined by the condition that in both 
phases the Gibbs free energies g(u, t) are equal. t&r) 
can be calculated only numerically, using g(u, t) of 
section 6 (dotted curve in Fig. 6b). On heating as well 
as on cooling t,(u) is the foremost temperature for 
the phase transition to occur. 

In practice. it is not obvious to what extent super- 
cooling or superheating takq place. We only can 
argue that in an elastically homogeneous unstressed 
single crystal the temperature M&s) at which, on 
cooling, the formation of martensite starts, has to be 
in the domain -l/4 < ms < ts(u = 0) = 0. Analo- 
gously, the temperature A&s) where, on heating, the 
formation of austenite starts, has to be in the domain 
0 = ts(u = 0) < a, < l/12. If there are lattice defects, 
the crystal is self-stressed. Thus we have a distribution 
of shear stress which, in the neighbourhood of the 
defect, varies rapidly. Since the temperature of the 
equilibrium phase transition t3 as well as the boun- 
daries of the stable temperature domains tl and t, 
depend on the shear stress, these temperatures will 
vary within the crystal, too. Consequently, on cooling 
the austenite to martensite phase transition earlier 
begins in regions where, by the self-stress, the tem- 
perature I, (and t2) is raised. In regions where t3 is 
lowered the phase transition takes place at lower tem- 
peratures only. In this way defects serve as nuclei for 
the phase transition [ 121. 

The driving force for the temperature-induced 
phase transition is the difierence between the Gibbs 
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Fig. 10. Driving force Ag for the phase transition from austenite to martensite plotted over r, if no 
external stress D is applied. The curve ends at the dots, since for I > i/12, D = 0 only austenite is stable 

and for t < -0.25, u = 0 only martensite is stable. 

free energies of both phases 

A& 0 = UJ, 0 - s&, 0 

which can be taken from Fig. 10. For zero load, Ag is 
equivalent to Af which is given by the difference 
between the austenitic and the martensitic minimum 
of the f-e-curves (Fig. 3). Consequently, we get 
(Fig. 10) 

Ag(t, f7 = 0) = f(t, e = eo) - /(t, e = 0) 

= -& - it + (’ -l;)3’z . (18) 

From Fig. 10 we can see that 1. Ag(t,a = 0) 
vanishes at t = 0 (equilibrium phase transition tem- 
perature) 2. Ag(t, G = 0) varies nearly linearly with t. 
The curve Ag(t, u = 0) ends at t = -l/4 and t = l/12 
since only in this temperature domain austenite and 
martensite are stable simultaneously. 

8. LATENT HEAT OF THE 
TRANSITION 

PHASE 

The latent heat of the equilibrium phase transition 
from austenite to martensite is, at constant load, given 

by 

Q(T) = TAS 

q(t) = 0 + to)& 

= (t + to)Cs(t, eM) 

- stt, edl, (19) 

where eM and e,, is the strain of martensite and aus- 
tenite respectively, which are to be taken at the stress 
a3(t) of the equilibrium phase transition (see section 
4). Since e, and e, cannot be represented by analyti- 
cal expressions generally, we confine ourselves to the 
temperature t = 0, where c3 vanishes. Consequently, 

from equation 4 we obtain 

e, = 0 e, = I/$?, 

and hence [equations (14,15,19)] 

q(t = 0) = -to/2 

Q(t = 0) = -[l/8 + cu/(2b2)]b”/a2. (20) 

9. SHAPE MEMORY EFFECT 

The shape memory effect is characterized by the 
fact that a permanent strain created by loading at low 
temperature vanishes on heating. In Fig. 11 this effect 
is accounted for in af-e-plot with temperature t as a 
parameter. Suppose the undeformed body (e = 0) 
consists of austenite A at low temperature t = t,. 
Loading at t, gives rise to a phase transition to the 
martensite twin M +, which is stable at t, without 
applying an external force. Thus we have created a 
permanent strain. On heating we shift from the f-e- 
curve according to fl to that one according to t,,. As 
the latter one does not have a second (martensitic) 
minimum, the martensite becomes unstable and the 

Fig. I I. Shape memory effect in anf-e-plot. (1) Loading of 
austenite A at low temperature t, leads to a phase tran- 
sition to martensite M, and thus to a permanent strain. 
Heating to t,, (2) causes instability of martensite M, and 
reverse phase transition to austenite A (3). The original 

shape is restored. 

A.M. 28/12-L 
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strain changes to the only minimum offat e = 0, i.e. 
the crystal retains its original shape. From the curves 

in Fig. 3 we can see that to get shape memory effect 

the starting temperature t, has to be - l/4 < r, c l/12 
and heating must exceed t = l/12. 

10. EXPERIMENTAL DETERMINATION OF 
PARAMETERS 

In the resealed units the free energy function is 
independent of a special material (equation 3). There- 
fore our theory can be fitted to a specific material 
only by the four resealing parameters a, /.I, y and 6, 
which are to be determined by comparison with ex- 
periments. Since our theory is adapted to single crys- 
tals these experiments should have been done on 
single crystals too. Measurements concerning hyster- 
esis phenomena are not suitable because we can cal- 
culate the highest possible hysteresis only which may 
not be reached in the test. Since the properties of 
shape memory alloys strongly depend on chemical 
composition and on processing (quenching, anneal- 
ing) the comparison of different experiments is diffi- 
cult. 

For the alloy Au2sCus0Zn4, Y. Murakami pub- 
lished a set of sufficient data [9], namely lattice par- 
ameter (which yields density), latent heat Q, equilib 
rium phase transition temperature To at zero stress, 
and the elastic shear constant C of austenite at differ- 
ent temperatures. The latter shows a linear decrease 
on cooling which is in excellent agreement with equa- 
tion (12). The slope of C’(T) gives us the parameter 

6 = 24J~n-~K-’ 

By extrapolating C’(T) to c’ = 0 we find the bound- 
ary of stability for austenite at zero stress to be 
T2 = 210K corresponding to t2 = -l/4. This infor- 
mation yields 

y = 5,0*103 Jcm-’ 

From the latent heat Q = 120cal/mole and 
Tc = 242K(t = 0) we get (with the density 
p = 11,l gcrn-’ from lattice parameter 0.61 nm 

/I = 1.5~10s Jcm-’ 

a = 7.5~10~ Jc~n-~ 

From these parameters we get for the unstressed mar- 
tensite at the equilibrium phase transition tempera- 
ture (t = 0, To = 242 K) a shear strain of 10% with 
respect to austenite [equations (2,4)], which, unfortu- 
nately, is not specified in Murakami’s paper. How- 
ever, this value typically occurs in martensites with 
the stacking sequence 18 R or 9 R. 

11. DISCUSSION 

Our model free energy [equation (3)] is the simplest 
function which qualitatively yields the experimental 
results on shape memory alloys, for example the 
stress-strain curves at various temperatures, the lat: 
tice softening, the shape memory effect, the stress- 
induced and the temperature-induced phase tran- 
sition, and its latent heat. In the language of catas- 
trophe theory the phase transition in shape memory 
alloys is called the ‘butterfly catastrophe’. In the nota- 
tion of &man [13] the function to be minimized is 
Gibbs free energy [equations (17,3)] as a function of e 
with u and t as parameters. The one-dimensional state 
space is built up by the strain e, the normal factor 
corresponds to the stress u, and the splitting factor to 
temperature t. The bias factor vanishes because of 
symmetry, and the butterfly factor is positive. 

In our model we deal with shear strain and shear 
stress. By rotating the system of coordinates any shear 
can be expressed as an extension accompanied by 
transversal contraction such that the volume is pre- 
served. Therefore the tensile test, which is more con- 
venient for experiments, can be treated by the model. 
However, since there are 12 crystallographically 
equivalent directions of lowest critical shear stress, we 
have a lot of competing martensite variants for the 
phase transition to result in. As selection rule we can 
apply Schmid’s law. 
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