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Abstract. Recent developments in technology requires the employment of self-powered sensors, actuators and small
electronic devices. Energy harvesting systems are useful to this goal and can be configured in many different ways to
improve process efficiency. The converted energy can also be stored to be further consumed. Mechanical vibration is one
of the energy sources that can be converted into electrical energy. Besides the energy harvested, it is possible to mitigate
undesirable vibrations. Smart materials are usually employed in these systems in order to promote electro-mechanical
conversion. Piezoelectrics are smart materials employed to several applications in industry. Nonlinear characteristics are
usually exploited in order to enhance energy harvesting capacity. In this regard, multistable energy potential is usually
exploited by adding magnetic interactions to the system, being described by a Duffing-type system. Duffing oscillator has
a rich dynamical behavior including chaos. In this regard, nonlinear dynamics analysis is essential for a proper design of
the energy harvesting system. An important issue to be investigated is the correlation between energy harvesting capacity
and the kind of response, which makes essential the use of proper nonlinear tools for a deep dynamical analysis. This
paper addresses the correlation between the maximum Lyapunov exponent and power harvesting parameters in order to
define harvesting capacity. Among the possibilities to be investigated, it should be highlighted the output RMS power and
the efficiency of the energy conversion. This analysis allows one to connect the degree of chaoticity, represented by the
value of Lyapunov exponents, with the electro-mechanical conversion efficiency.
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1. INTRODUCTION

Vibration-based energy harvesting has been an emergent research subject over the last few decades. The main idea
is to convert wasted vibration energy into useful electrical energy through some electro-mechanical mechanism. For this
purpose, synthetic piezoelectric materials are often a good alternative due to their capacity of converting strain energy into
electrical energy through the direct piezoelectric effect. Applications are vast and versatile as: civil structures (Erturk,
2011; Peigney and Siegert, 2013; Zuo and Tang, 2013; Xiang et al., 2014; Elhalwagy et al., 2017; Wang et al., 2018),
biomedic applications (Dagdeviren et al., 2014), raindrop impacts (Ilyas and Swingler, 2015; Bao and Wang, 2021), self
powered wireless sensors and MEMs (Noël E. duToit et al., 2006; Lee and Choi, 2014), offshore applications (Nabavi
et al., 2018), vehicles (Zhang et al., 2018; Tian et al., 2020), among others.

Early developments show that conventional piezoelectric energy harvester devices are efficient only in a small band-
width, on the vicinity of the system natural frequency. Therefore, slight changes on the ambient vibration dramatically
reduces the output power from the harvester (Erturk and Inman, 2011b). This characteristic implies limited applications
in real world situations as natural vibrations are often composed by multiple frequency bands. In order to deal with this
problem, new researches began to emerge showing that nonlinear energy harvesting devices can effectively broaden the
bandwidth of operation (Pellegrini et al., 2013). In this regard, bistable energy harvesters were one of the first nonlinear
devices to be investigated (Stanton et al., 2009; Ferrari et al., 2010a,b; Erturk and Inman, 2011a).

Bistable energy harvester systems are known to produce two patterns of motion: intra-well motion, in which the
dynamics of the system is trapped in a energy well around one stable equilibrium point; and inter-well motion, in which
the dynamics of the system freely oscillates around two equilibrium points (Tran et al., 2018). Although periodic motion,
generally, is the best alternative for energy harvesting purposes, it should be pointed out that inter-well chaotic behavior is
more interesting than intra-well periodic behavior and therefore, beneficial chaotic motion can increase the output power
of the system compared to the conventional harvesters. Regarding that, Costa et al. (2021) introduces the concept of
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intensity of inter-well motion, represented by IW(%), accounting the percentage of cycles that the system visits two
equilibrium points during steady state. On this basis, it is often possible to establish that the greater is IW(%), the greater
is the output power of the system.

This paper addresses a numerical investigation of Duffing-type energy harvesting systems, establishing a correlation
among the maximum Lyapunov Exponent (λ1), the intensity of inter-well motion (IW(%)) and the energy harvesting
performance for chaotic dynamics in general . Bistable behavior is of concern and results show interesting situations to
be exploit for energy harvesting purposes.

2. THEORETICAL BACKGROUND

Energy harvesting system is typically represented by a piezomagnetoelastic device composed by a composite cantilever
beam formed by one layer of a structural material and two layers of a synthetic piezoelectric material (Figure 1a). The
bistablity of the system is induced by magnetic interactions, generating a unstable equilibrium point at the center line of
the beam and two opposite stable equilibrium points associated with a double well potential.
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Figure 1: (a) Piezomagnetoelastic device, an example of a bistable energy harvesting structure. (b) Corresponding lumped
model.

The system mathematical model is established by considering the first vibration mode of the piezomagnetoelastic
beam, being represented by an electro-mechanical oscillator presented in Figure 1b. The governing equations of the
system are given by(Erturk and Inman, 2011b; Paula et al., 2015; Costa et al., 2021):

meqü+ cu̇+ f(u)− θv = −meqüb

Cpv̇ +
1

Req
v + θu̇ = 0

(1)

where f(u) = −au + bu3 is the system’s restitution force, where (a, b) > (0, 0) are the restitution parameters. u
and v represents the displacement and voltage, respectively. The harvester is excited by a harmonic base excitation of
the type ub = A sin(ωt), and over dot notation (̇) = d()/dt represents time derivative, thus the base acceleration is
üb = −Aω2 sin(ωt). The equivalent mass and the damping of the system are meq and c, respectively, whilst Cp and Req
are the electrical parameters related to the capacitance of the piezoelectric element and the equivalent electrical resistance
of the system, respectively. The equivalent electrical resistance of the system is composed by the electrical resistance of
the circuit (Rl) and the electrical resistance of the piezoelectric element (Rp). Finally, θ is the electro-mechanical coupling
coefficient of the piezoelectric element that couples the mechanical behavior with the electrical response.

Stability analysis of the system shows the emergence of 3 equilibrium points, EP, of the form (ū, ū′), being two of
them stable and one unstable, as follows:

EP1 (stable) =

(
−
√
a

b
, 0

)
, EP2 (unstable) = (0, 0) , EP3 (stable) =

(√
a

b
, 0

)
(2)

Dimensionless equations are conveniently employed, being defined in the sequence. The half distance between system
equilibrium states is used as a characteristic length (L =

√
a/b). Besides, the oscillation frequency around one of the

stable configurations is used to define a characteristic time (ω0 =
√

2a/meq). Finally, the voltage amplitude achieved
when the beam oscillates with amplitude

√
a/b and Req → ∞ is employed to defined a characteristic voltage. Under

these assumptions, the following definitions are presented:
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x =
u

L
=

√
b

a
u, τ = ω0t =

√
2a

meq
t, ν =

Cp
θ

√
b

a
v, (3)

where x, τ , ν are the dimensionless displacement, time and voltage, respectively. Dimensionless time derivatives are
defined using the chain rule as:

ẋ =
dx

dτ
=
dx

dt

dt

dτ
=

1

ω0

√
b

a
u̇ (4)

ẍ =
dẋ

dτ
=
dẋ

dt

dt

dτ
=

1

ω2
0

√
b

a
ü (5)

ν̇ =
dν

dτ
=
dν

dt

dt

dτ
=

Cp
θω0

√
b

a
v (6)

Based on that, the dimensionless equations of motion are given by:

ẍ+ 2ζẋ+
1

2
(−x+ x3)− χν = γ sin(Ωτ)

ν̇ + ϕν + ẋ = 0
(7)

where dimensionless parameters arise as ζ being the damping coefficient, χ the electro-mechanical coefficient in the
mechanical equation, ϕ a coefficient proportional to the electrical resistance; Ω and γ are respectively the dimensionless
forcing frequency and amplitude:

ζ =
c

2
√

2ameq
, χ =

θ2

2aCp
, Ω =

ω

ω0
, γ = A

√
b

a
Ω2, ϕ =

1

ω0CpReq
. (8)

The energy harvesting characterization needs the definition of the input power from base excitation and the the output
power converted to electrical energy by the piezoelectric material. Since each term in Eq. 7a has force dimension, when
multiplied by ẋ it turns into power dimension. This way, in order to obtain expressions for such sought powers, one
multiplies it by ẋ and integrates in time domain from τ = τ0 to τ = τf , which yields∫ τf

τ0

[
ẍ+ 2ζẋ− x

2
+
x3

2
− χν

]
ẋ dτ =

∫ τf

τ0

[γ sin(Ωτ)] ẋ dτ (9)

After substituting Eq. 7b into Eq. 9, integrating by parts and algebraic manipulation, one obtains the following equation[
ẋ2

2
− x2

4
+
x4

8
+
χν2

2

]τf
τ0

=

∫ τf

τ0

γẋ sin(Ωτ) dτ −
∫ τf

τ0

2ζẋ2 dτ −
∫ τf

τ0

χϕν2dτ (10)

where the first term in the right hand side of Eq. 10 stands for the work done by the base into the system, the second for
the dissipated energy by the damper and, finally, the last one for the piezoelectric energy harvested in the time interval
[τ0, τf ]. Each integrand from these three terms, naturally, yields each respective power expression. At this point, one
should notice that, if the system displays a periodic response with period τf − τ0, the left hand side of Eq. 10 becomes
null. Therefore, one concludes that all the work done by the base excitation is dissipated either by the damper or the
electrical circuit during one period cycle. Moreover, since the integrand from both dissipation terms are always positive,
their integral from Eq. 10 becomes larger as the difference τf − τ0 also becomes larger. Considering a bounded response
for both x and ν, the left hand side of Eq. 10 does not grow as the difference τf − τ0 grows. This way, the only term
that can balance the large values of both dissipation terms are the work done by the base excitation. From this physical
discussion, considering the limit τf − τ0 →∞, Eq. 10 becomes

lim
τf−τ0→∞

[∫ τf

τ0

γẋ sin(Ωτ) dτ −
∫ τf

τ0

2ζẋ2 dτ −
∫ τf

τ0

χϕν2dτ
]

= 0 (11)

Therefore, the input power from base excitation, Pin, and the out power, harvested by the electrical circuit, Pout, are given
by

Pin = γẋ sin(Ωτ)

Pout = χϕν2
(12)

Thus, in accordance with the literature, one can assume the energy harvesting efficiency η to be the ratio between the
Root Mean Square (RMS) of Pin over Pout, yielding

luagu
Realce
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P RMS
in =

1

τf − τ0

∫ τf

τ0

P 2
in dτ (13)

P RMS
out =

1

τf − τ0

∫ τf

τ0

P 2
out dτ (14)

η =
P RMS

out

P RMS
in

(15)

3. AN OVERVIEW OF THE SYSTEM DYNAMICS

The bistable Duffing-type oscillator is characterized by straight unstable equilibrium configuration and two stable and
symmetrical configurations in the vicinity of the straight configuration. Depending on the base excitation, the system
can oscillate around one of the stable equilibrium configurations, which is called intra-well oscillation, or can oscillate
around both stable configurations, yielding an inter-well oscillation. It is worthwhile mentioning that, either periodic or
chaotic responses can be associated with each one of these behaviors. The measurement of the intensity of the inter-well
oscillation is of major importance as the greater the intensity of inter-well motion, greater the RMS output power tends
to become (Costa et al., 2021). Therefore, it can be evaluated by the ratio between the number of jumps between stable
equilibrium points (J) the system exhibits in steady state, and the maximum jumps between stable equilibrium points
(Jmax) the system is generally capable of performing in the steady state time interval, as follows:

IW =
J

Jmax
(16)

A dynamical jump (J) can be illustrated by the point of view of the dimensionless mechanical restitution force of the

system, f(x) = −x
2

+
x3

2
, that results in the dimensionless potential mechanical energy of the system, U(x) = −x

2

4
+
x4

8
,

also represented by the mechanical portion of the left hand side of Eq. 9. Figure 2 shows the shapes of the mechanical
restitution force, the mechanical potential energy function and the path the system has to course to execute a jump. A
jump occurs when the system travels from the first stable equilibrium position to the second stable equilibrium position,
or vice-versa. For that, the system needs to have enough energy to overcome a potential energy barrier that has its peak
at the unstable equilibrium position. For this reason, sometimes it can be trapped in a potential well, due to the lack of
energy needed to overcome the barrier, producing transitory intra-well motion, diminishing the intensity of total inter-well
motion (IW).
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Figure 2: (a) Dimensionless mechanical restitution force of the system, f(x). (b) Dimensionless mechanical potential
energy function of the system, U(x). Blue circle shaped markers represent stable equilibrium points, while diamond
shaped red markers represent the unstable equilibrium point.

Preliminary results, shown in Figure 3, illustrate this kind of behavior. Parameters employed on this analysis are
summarized as follows: ζ = 0.025, χ = 0.0125, ϕ = 0.035, γ = 0.3, x(0) = 1, ẋ(0) = ν(0) = 0, and Ω changes
according to the curve. The black curve (Ω = 1.3) shows a situation in which the system is trapped in a energy potential
well, producing intra-well motion, therefore IW = 0%. Still, the blue curve (Ω = 1.18) shows a chaotic dynamics
in which the system is in a transitory inter-well motion with intensity of IW = 25.4% and is producing more voltage
than the previous situation. Additionally, purple (Ω = 0.3) and dark gray (Ω = 1.052) curves show dynamical motions
that produces similar voltage outputs and present a full inter-well motion (IW = 100%). These example illustrates how
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chaotic motion can be beneficial by the point of view of energy generation, and sometimes be comparable or better than
periodic motions, depending on the situation. On this case, the periodic full inter-well motion (IW = 100%) is better
than the chaotic with transitory inter-well motion (IW = 25.4%), however it can be comparable with the chaotic full
inter-well dynamics (IW = 100%); on the other hand the periodic intra-well dynamics (IW = 0%) is the worst in terms
of energy harvested. The illustrated phenomena shows the need of a more careful analysis of the chaotic dynamics of
bistable systems for energy harvesting purposes.
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ẋ

(a)

Period-1 (IW = 0)

Period-1 (IW = 100%)

Chaotic (IW = 100%)

Chaotic (IW = 25.4%)

−2 −1 0 1 2

ν

−2

−1

0

1

2

ẋ
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Figure 3: (a) Steady state x-ẋ phase space for different dynamical responses and IW intensities. (b) Steady state ν-ẋ
phase space for different dynamical responses and IW intensities. Blue circle shaped markers represent stable equilibrium
points, while diamond shaped red markers represent the unstable equilibrium point.

From this point on, the dimensionless parameters employed in all analysis are given in Table 1. The electrical parame-
ters are kept constant in all simulations, while mechanical parameters, such as damping ζ and base excitation parameters,
are varied.

Numerical simulations are carried out employing fourth order Runge-Kutta method. A total of np = 1000 forcing
periods are analyzed with initial conditions of x(0) = 1, ẋ(0) = 0, ν(0) = 0. Also, three different cases considering
different values of damping as ζ1 = 0.0025, ζ2 = 0.025 and ζ3 = 0.25 are chosen to determine the influence of
mechanical dissipation on system response. The largest Lyapunov exponent λ1 are employed to characterize chaos, being
calculated by the method proposed by Wolf et al. (1985). Lyapunov exponents are evaluated in two initial time stages,
τ0 = 0 and τ0 = 0.75τf (steady state), and compared, in order to ensure proper convergence on cases that show long
transient chaos orbits, where τf = 2πnp/Ω is the final time of integration.

Table 1: Parameters employed in all numerical analyzes.
ζ χ ϕ γ Ω x(0) ẋ(0) ν(0) np

0.0025→ 0.25 0.0125 0.035 0.01→ 1 0.01→ 2 1 0 0 1000

Initially, the largest Lyapunov exponent (λ1), intensity of inter-well motion (IW), P RMS
out , and efficiency (η) diagrams

are investigated considering the γ-Ω domain. These diagrams present an overview of the system dynamics for different
orders of magnitude of damping coefficient (ζ = 0.0025, 0.025 and 0.25) (Figure 4). The first row of diagrams considers
the quantification of chaos by the analysis of the largest Lyapunov exponent λ1. Chaotic responses are reckoned by
displaying a positive Lyapunov exponent (rainbow colors on the colorbar scale), while periodic ones show a negative
exponent (grayscale colors on the colorbar scale).

Since the focus is on the chaotic responses, the second, third and fourth rows of Figure 4 highlights only show the
chaotic attractors, while periodic responses are overshadowed with black color. The second row shows the intensity of
inter-well motion IW. It is observed that for the first two cases (ζ = 0.0025 and ζ = 0.025), low values of Ω present
higher intensities, while for higher frequencies, IW shows more variation, presenting lower values. For the third case
(ζ = 0.25), results of IW are more complex, however still following the same pattern, indicating higher intensities for
lower frequencies.
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Figure 4: Different aspects of the system dynamics for (a) ζ = 0.0025, (b) ζ = 0.025, and (c) ζ = 0.25. The first row
represents the largest Lyapunov Exponent of the system; the second row represents the intensity of inter-well motion;
the third row shows the RMS of output power, i.e. the converted energy; the fourth row exhibits the efficiency of the
conversion.

The third row of Figure 4 shows the RMS output power, Pout. Results of the first two cases (ζ = 0.0025 and 0.025) are
difficult to distinguish variations because of few points with peak values at the top boundary of the chaotic region around
the interval 1 < Ω < 2. The third case (ζ = 0.25) indicates that the values of Pout present some degree of nonlinear
proportionality with the values of IW and λ1, however it is difficult to establish a proper correlation from these diagrams.

Efficiency diagrams presented on the fourth row show that the efficiency of conversion reaches its peak near the
resonance peak and also indicates some correlation with the value of Lyapunov exponents. Moreover, it can be observed
that the greater is the damping coefficient (ζ), the lower is the maximum efficiency of the system.

Results indicate that a simplification of the parameter domain is necessary to find the correlations between the quan-
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tities of interest. From this point on, it is carried out an analysis of the energy harvesting parameters only for 100%
inter-well oscillations (IW = 100%). For cases where 0 < IW < 100, the dynamics of the system proved to be much
more richer and complex. Also, sets of values of forcing amplitude (γ) are chosen according to the analysis. The next
section investigates the correlation among quantities of interest based on these simplifications.

4. CORRELATIONS AMONG QUANTITIES OF INTEREST

The analysis of a subset of fixed parameters is now in focus. Bifurcation diagrams are built in order to study the
dynamics on specific cases. All parameters are constant and Ω is varied from 0.01 to 1. All simulations employ the initial
conditions of x(0) = 1 and ẋ(0) = ν(0) = 0 for each set of parameters.

Fig. 5 presents both P RMS
in and P RMS

out , as well as the efficiency from the harvesting process η. As previously men-
tioned, the dynamical response can be either chaotic or periodic. Thus, results in Fig. 5 are displayed in different colors
for each kind of response. One can observe that increasing the excitation frequency increases the amount of mechanical
input power to the system. Since Ω = 1 yields the natural frequency of an oscillation with small enough amplitude around
on of the stable configurations, it is expected an increasing of input power as Ω increases towards Ω = 1 due to larger
amplitudes of oscillation. Moreover, for almost any fixed Ω, one can observe that P RMS

in is greater for chaotic responses
than for periodic ones. However, the opposite takes place for P RMS

out . In other words, a chaotic response allows the base
excitation to furnish more work to the mechanical system when compared to a periodic response, but a smaller fraction
of this work is truly converted into electrical power by the piezoelectric layer. The efficiency of the conversion can be
observed in Fig. 5c, where one can see chaotic responses always show less efficiency.
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Figure 5: Bifurcation diagrams of (a) P RMS
in , (b) P RMS

out , (c) η, and (d) ẋRMS for (ζ, γ) = (0.0025, 0.5).

Since the amount of input power from base excitation is greater for chaotic response, the RMS of velocity is also
greater, which can be observed in Fig. 5. From Eq. 10 one observes that the power dissipated by damping effects is
proportional to ẋ2, which is also proportional to the RMS of the velocity (ẋRMS). Moreover, from Eq. 11 and 12b,
the electric power is a function, although not exclusive, of ẋ2. Therefore, both effects (damping and power conversion)
compete to gain a wider fraction of the input power. For low values of Ω, the increase of Ω also increases the fraction of
input power which is converted by the electric circuit (P RMS

out ), given by a positive slope dη/dΩ. As Ω still increases, a
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maximum efficiency value is reached, followed by a constant growing domination of input power fraction that is dissipated
by the mechanical damper.

Fig. 6 displays the bifurcation diagram for λ1, where it is possible to see that λ1 continuously increases as Ω increases.
This way, the rate a small enough perturbation grows increases as the excitation frequency approaches Ω = 1.
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Figure 6: Bifurcation diagram of Lyapunov exponent λ1 for chaotic responses (blue) and periodic (red).

Regarding the amplitude of excitation, Fig. 7 displays the influence of γ concerning the evaluation of the efficiency η
and Lyapunov exponent λ only for chaotic responses. Besides the shape of all efficiency curves are the same, smaller γ
can increase the efficiency of energy harvesting, although the purple curve, representing γ = 0.25, shows less amount of
data because of lower number of points in which IW = 100% on this case. On the other hand, the Lyapunov exponent
seemed to be not sensitive to γ variation. This way, despite the input power increases for higher values of γ, due to
Eq. 12a, non intuitively the rate of divergence in phase space does not grow.
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Figure 7: Bifurcation diagram for ζ = 0.0025 (a) of λ1-Ω and (b) η-Ω .
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Figure 8: Bifurcation diagram for γ = 0.5 of (a) λ1-Ω and (b) η-Ω.

Considering the influence of mechanical damping ζ, Fig. 8 displays its influence on both η and λ1. For ζ = 0.025,
dη/dΩ is negative regardless the value of Ω. Hence, as the system approaches the resonance condition (Ω → 1), the
fraction of dissipated energy by the damper increases. Nevertheless, non intuitively, the efficiency of conversion is higher
for low excitation frequency for a higher ζ. Regarding the influence of λ1, a higher damper tends to decrease λ1 for any
value of excitation frequency Ω.

Now, consider the correlations between the Lyapunov exponents and energy conversion measurements (P RMS
out and η).

Fig. 8a and 8b shows that for damping coefficients of ζ = 0.0025, the correlation between P RMS
out and λ1 outputs follows

a clear pattern of positive dP RMS
out /dλ1 slope. Around λ1 = 0.025 the rate of change starts to quickly decrease, until it

reaches a plateau. For λ1 > 0.06 the pattern starts to disrupt, getting diffuse and complex, becoming difficult to follow.
Additionally, the correlation between η and λ1 also follows a clear pattern for the same value of damping coefficient
(ζ = 0.0025). It starts with a negative slope, until it reaches a local minimum around 0 < λ1 < 0.02. Then, the slope
becomes positive and reaches a peak around 0.025 < λ1 < 0.035. At last, the slope becomes negative and the pattern
start to slowly decrease, reaching a point in which a similar disrupt phenomena occur following the same trend as Fig. 8a.
On the other hand, Figures 8c and 8d shows that there is also different correlations for values of ζ = 0.025, however, for
that case, the patterns are less concise, indicating the possibility that for greater values of ζ, the correlation patterns tend
to be destroyed.

Despite the correlation among energy conversion quantities and the Lyapunov exponent observed in Fig. 8, it is worth-
while mentioning that each point within this figure was generated with a different excitation condition (different Ω), which
also contributes to make such quantities to vary. This way, it shows the need of a more rigorous analysis to find a more
precise correlation between the energy conversion measurements and the correspondent Lyapunov exponents for chaotic
responses.
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Figure 8: Correlations between λ1 for for ζ = 0.025 and (a) RMS of Pout, (b) η for ζ = 0.0025. (c) RMS of Pout, (d) η.

5. CONCLUSIONS

This work addresses a numerical analysis of the chaotic responses of bistable piezoelectric energy harvesting device
based on the polynomial restitution force model. Results show comprehensive overview diagrams that resumes the chaotic
dynamics of the system for a given set of initial conditions based on the equilibrium position of the harvester. Initial
analysis show the need to distinguish different patterns of inter-well motion intensity, as it has great influence on the
power output of the system. A value of inter-well intensity of 100% was chosen to proceed with the analysis.

A set of bifurcation diagrams were analyzed assigning fixed values for damping and forcing amplitude, and varying
the forcing frequency. Main conclusions shows that the magnitude of the largest Lyapunov exponent seems not to be
sensitive to the change of the forcing amplitude. Efficiency of the system also is qualitatively the same, changing only its
magnitude proportionally with the value of gamma. Also, chaotic responses are always less beneficial compared to the
periodic responses, confirming results previously shown in the literature.

Apart from that, correlation plots were made to determine the relation between the energy conversion measurements
and the largest Lyapunov exponent. Preliminary results show that there is a clear relationship between Pout and λ1,
and therefore η and λ1. Also, changes in damping change this relation pattern. An observable concerning phenomena
representing the destruction of correlation patterns also arise in the analysis, showing that other variables of the system,
as excitation frequency, can influence this the correlation, showing the need of a more rigorous analysis in a future work
to find a more precise correlation between the electrical outputs and the correspondent largest Lyapunov exponent for
chaotic responses.
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