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Abstract. The classical Duffing oscillator is often used to describe a great variety of physical phenomena. A deep
nonlinear dynamics investigation of these systems is important to understand the nuances of the involved phenomena
and their applications. This contribution deals with a parametric analysis of a two-degree of freedom Duffing oscillator.
Stiffness coefficients are investigated for different stability configurations of the system. Besides, the external forcing
parameters are also evaluated mapping and quantifying different types of responses. Numerical simulations are employed
using fourth order Runge-Kutta method. Poincaré sections and Lyapunov exponents are employed to define different kinds
of responses, characterizing periodic, chaotic and hyperchaotic behaviors. Results show a variety of complex behaviors
associated with these types of systems.
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1. INTRODUCTION

The Duffing Oscillator was first described by the German engineer Georg Duffing (1918). In general, Duffing-type
systems may exhibit periodic and chaotic motion, and a vast open literature is dedicated to cover its main characteristics.
These kind of systems are often employed to represent specific mechanical and electrical nonlinear systems, establishing
experimental basis for different kinds of investigations. Common examples are the dynamical characterization of the
magnetoelastic beam structure, initially investigated by Moon and Holmes (1979) and later by Hikihara and Kawagoshi
(1996), and Tam and Holmes (2014); the Duffing-type experimental nonlinear circuit investigated by Fouda et al. (2016);
the experimental display that mimics a Duffing system developed by Gottwald et al. (1992). Duffing-type systems have
also been employed in emergent research fields as energy harvesting systems (Erturk and Inman, 2011; Masana and
Daqaq, 2011; Paula et al., 2015; Costa et al., 2021) and message encryption for secure communications using chaotic
attractors (Zaher, 2018).

The versatility of the simple mathematical model of the Duffing oscillator represented by its wide range of applications
justifies the need to further investigate its characteristics on systems with multiple degrees of freedom. In addition,
a literature review shows few texts dealing with the subject. Natsiavas and Hagler (1991) showed multiple solution
branches of a 2 degree of freedom duffing oscillator utilizing the method of trigonometric collocation along with Floquet
theory. Savi and Pacheco (2002) investigated the transmissibility between two coupled Duffing oscillators; Kenfack
(2003) revealed the bifurcations characteristics of two-coupled double-well Duffing oscillators and found the presence of
sudden chaos and mostly Hopf bifurcations; Musielak et al. (2005) studied chaotic behavior and routes to chaos in a multi
degree of freedom Duffing system.

The continuous effort to map and quantify periodic and aperiodic behaviors of Duffing-like systems (Zeni and Gallas,
1995; Costa et al., 2019) is important to determine the best configurations for different kinds of application. This work
addresses a parametric investigation of a two-degree of freedom oscillator in order to map and quantify different kinds of
dynamical responses for different stability conditions. Steady state numerical solutions are determined using fourth order
Runge-Kutta method. Periodic, chaotic and hyperchaotic behaviors are classified by the employment of Poincaré Maps
and the estimation of Lyapunov Exponents by the method proposed by Wolf et al. (1985).
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2. PHYSICAL MODELING

Consider the mechanical representation of a two-degree of freedom oscillator, depicted in Figure 1, consisted of two
masses, mi (i = 1, 2), supported by two nonlinear springs with a restitution force fi (i = 1, 2) and linear viscous dampers
with coefficient ci (i = 1, 2). The system is subjected to a harmonic excitation Fi(t).

u1(t)

Nonlinear Element 1c1

m1

Nonlinear Element 2c2

m2

u2(t)

F1(t)

F2(t)

Figure 1: Mechanical lumped model representation of a two-degree of freedom Duffing oscillator.

The Duffing-type restitution forces of the nonlinear elements are typically represented by a cubic polynomial behavior
as follows:

f1(u1) = (k1 + a1)u1 + b1u
3
1 (1)

f2(u2 − u1) = (k2 + a2)(u2 − u1) + b2(u2 − u1)3 (2)

By establishing the equilibrium of the system, the dynamical equations of motion can be expressed as follows, where
it is assumed a harmonic excitation of the form: F1(t) = A sin (ωt) and F2(t) = 0,

m1u
′′
1 + c1u

′
1 − c2(u′2 − u′1) + (k1 + a1)u1 + b1u

3
1 − (k2 + a2)(u2 − u1)− b2(u2 − u1)3 = A sin(ωt) (3)

m2u
′′
2 + c2(u′2 − u′1) + (k2 + a2)(u2 − u1) + b2(u2 − u1)3 = 0 (4)

where ki(i = 1, 2) are the linear stiffness of the respective degree of freedom, and ai(i = 1, 2) and bi(i = 1, 2) are the
Duffing stiffness coefficients. Subscript ()′ = d()/dt represents the time derivative.

A dimensionless approach is now in focus by defining ω1 =
√
k1/m1 and ω2 =

√
k2/m2 as the reference frequencies

around one stable equilibrium point for the first and second degrees of freedom of the system, respectively; and considering
a reference length (L), the dimensionless time and displacements are given by:

τ = ω1t, x1 =
u1
L
, x2 =

u2
L

(5)

Thus, through the chain rule, one can determine the dimensionless variables:

ẋ1 =
u′1
ω1L

, ẍ1 =
u′′1
ω2
1L
, ẋ2 =

u′2
ω1L

, ẍ2 =
u′′2
ω2
1L

(6)

where (̇) = d()/dτ represents the dimensionless time derivative. Therefore, Equations 3 and 4 can be rewritten in
dimensionless form as:

ẍ1 + 2ζ1ẋ1 − 2ζ2 (ẋ2 − ẋ1) + α1x1 + β1x
3
1 − α2 (x2 − x1)− β2 (x2 − x1)

3
= γ sin(Ωτ) (7)

ẍ2 +
2ζ2
ρ

(ẋ2 − ẋ1) +
α2

ρ
(x2 − x1) +

β2
ρ

(x2 − x1)
3

= 0 (8)

where the dimensionless parameters are:
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ζ1 =
c1

2ω1m1
, ζ2 =

c2
2ω1m1

, ᾱ1 =
a1

ω2
1m1

, ᾱ2 =
a2

ω2
1m1

, β1 =
b1L

2

ω2
1m1

, β2 =
b2L

2

ω2
1m1

(9)

γ =
A

ω2
1Lm1

, Ω =
ω

ω1
, ρ =

m2

m1
, δ =

ω2

ω1
, α1 = 1 + ᾱ1, α2 = δ2ρ+ ᾱ2 (10)

Therefore, the equations of motion can be written as follows in the canonical form,

ẋ = f(x) (11)

where the state variables are given by,

x =


x1
ẋ1
x2
ẋ2

 (12)

f(x) =


ẋ1

γ sin (Ωτ)− 2ζ1ẋ1 + 2ζ2(ẋ2 − ẋ1)− α1x1 − β1x31 + α2(x2 − x1) + β2(x2 − x1)3

ẋ2

−2ζ2
ρ

(ẋ2 − ẋ1)− α2

ρ
(x2 − x1)− β2

ρ
(x2 − x1)3

 (13)

3. STABILITY ANALYSIS

The equilibrium configurations of the system can be determined when both velocity and acceleration are zero in a
non-forced system (γ sin (Ωτ) = 0). Therefore, solving ẋ = f(x) = 0 yields up to 9 equilibrium points.

EP1 = (x̄1, ˙̄x1, x̄2, ˙̄x2)1 = (0, 0, 0, 0) (14)

EP2 = (x̄1, ˙̄x1, x̄2, ˙̄x2)2 =

(
0, 0,

i
√
α2√
β2

, 0

)
(15)

EP3 = (x̄1, ˙̄x1, x̄2, ˙̄x2)3 =

(
0, 0,− i

√
α2√
β2

, 0

)
(16)

EP4 = (x̄1, ˙̄x1, x̄2, ˙̄x2)4 =

(
i
√
α1√
β1

, 0,
i
√
α1√
β1

, 0

)
(17)

EP5 = (x̄1, ˙̄x1, x̄2, ˙̄x2)5 =

(
− i
√
α1√
β1

, 0,− i
√
α1√
β1

, 0

)
(18)

EP6 = (x̄1, ˙̄x1, x̄2, ˙̄x2)6 =

(
i
√
α1√
β1

, 0,
i
√
α2√
β2

+
i
√
α1√
β1

, 0

)
(19)

EP7 = (x̄1, ˙̄x1, x̄2, ˙̄x2)7 =

(
i
√
α1√
β1

, 0,− i
√
α2√
β2

+
i
√
α1√
β1

, 0

)
(20)

EP8 = (x̄1, ˙̄x1, x̄2, ˙̄x2)8 =

(
− i
√
α1√
β1

, 0,
i
√
α2√
β2
− i
√
α1√
β1

, 0

)
(21)

EP9 = (x̄1, ˙̄x1, x̄2, ˙̄x2)9 =

(
− i
√
α1√
β1

, 0,− i
√
α2√
β2
− i
√
α1√
β1

, 0

)
(22)

The existence of an equilibrium point depends on the combination of the parameters α1, α2, β1, β2. EP1 always
exists; EP2 and EP3 exist if sgn (α2) 6= sgn (β2); EP4 and EP5 exist if sgn (α1) 6= sgn (β1); EP6, EP7, EP8 and EP9

exist if sgn (α1) 6= sgn (β1) and sgn (α2) 6= sgn (β2).
The nature of stability of each equilibrium point can be determined evaluating the solution through a linearization of

the system around each equilibrium point. By considering the Jacobian matrix J evaluated at each the equilibrium point,
and through its eigenvalues λe, the stability characteristics of these points are determined. On this basis, the eigenvalue
spectrum of J can be classified in 3 sets: (1) Stable if {λe ∈ C | Re(λe) < 0}, (2) Unstable if {λe ∈ C | Re(λe) > 0},
and (3) Center if {λe ∈ C | Re(λe) = 0}.
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The stability of the linearized system at the vicinity of an equilibrium point corresponds to the stability of the associated
nonlinear system, as long as that point is hyperbolic, which means that the Jacobian Matrix J has no eigenvalue that the
real part vanishes (Re(λe

k) 6= 0,∀k) (Savi, 2017). The Jacobian matrix of the Duffing system is given by:

J = ∇Tf(x̄1, ˙̄x1, x̄2, ˙̄x2) =



∂ẋ1
∂x̄1

∂ẋ1
∂ ˙̄x1

∂ẋ1
∂x̄2

∂ẋ1
∂ ˙̄x2

∂ẍ1
∂x̄1

∂ẍ1
∂ ˙̄x1

∂ẍ1
∂x̄2

∂ẍ1
∂ ˙̄x2

∂ẋ2
∂x̄1

∂ẋ2
∂ ˙̄x1

∂ẋ2
∂x̄2

∂ẋ2
∂ ˙̄x2

∂ẍ2
∂x̄1

∂ẍ2
∂ ˙̄x1

∂ẍ2
∂x̄2

∂ẍ2
∂ ˙̄x2


=

=



0 1 0 0

−α1 − α2 − 3
[
β1x̄

2
1 + β2 (x̄2 − x̄1)

2
]
−2 (ζ1 + ζ2) α2 + 3β2 (x̄2 − x̄1)

2
2ζ2

0 0 0 1

1

ρ

[
α2 + 3β2 (x̄2 − x̄1)

2
] 2ζ2

ρ
−1

ρ

[
α2 + 3β2 (x̄2 − x̄1)

2
]
−2ζ2

ρ



(23)

The eigenvalues of J are determined by:

det(J− λeI) = 0 (24)

The stability analysis can also be complemented by the point of view of the potential energy function of the system
determined by:

Ψ(x1, x2) = Ψ1 + Ψ2 =
1

2
α1x

2
1 +

1

4
β1x

4
1 +

1

2
α2(x2 − x1)2 +

1

4
β2(x2 − x1)4 (25)

Figure 2 shows some examples of possible equilibrium configurations of the system. Diamond shaped red dots rep-
resent unstable equilibrium points, while circular shaped blue dots represent stable equilibrium points. Energy levels
associates with the potential energy function Ψ(x1, x2) are depicted by the color scale; darker colors represent potential
wells (low energy levels), while lighter colors represent higher energy levels.

(a)

−1 0 1

x1

−3

−2

−1

0

1

2

3

x
2

(α1, α2, β1, β2) = (1, 1, 1, 1)

Stable

Unstable

0.0

0.2

0.4

0.6

0.8

1.0
Ψ

(b)

−1 0 1

x1

−3

−2

−1

0

1

2

3

x
2

(α1, α2, β1, β2) = (−1,−1, 1, 1)

Stable

Unstable

−0.5

−0.4

−0.3

−0.2

−0.1

0.0
Ψ



26th ABCM International Congress of Mechanical Engineering (COBEM 2021)
November 22-26, 2021, Florianópolis, SC, Brazil

(c)

−1 0 1

x1

−3

−2

−1

0

1

2

3

x
2

(α1, α2, β1, β2) = (−1, 1, 1, 1)

Stable

Unstable

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
Ψ

(d)

−1 0 1

x1

−3

−2

−1

0

1

2

3

x
2

(α1, α2, β1, β2) = (1,−1, 1, 1)

Stable

Unstable

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
Ψ

Figure 2: Equilibrium points and potential energy levels for different equilibrium configurations.

Summarizing, Table 1 shows all possible equilibrium configurations based on the 16 different combinations of α1, α2,
β1 and β2 and the nature of stability for each point.

Table 1: Existence and nature of stability of equilibrium points according to the sign of dimensionless restoring force
parameters.

α1 α2 β1 β2 EP1 EP2 EP3 EP4 EP5 EP6 EP7 EP8 EP9 Total
+ + + + Stable 7 7 7 7 7 7 7 7 1
− − − − Unst. 7 7 7 7 7 7 7 7 1
+ − − − Unst. 7 7 Unst. Unst. 7 7 7 7 3
+ + − − Stable Unst. Unst. Unst. Unst. Unst. Unst. Unst. Unst. 9
+ + + − Stable Unst. Unst. 7 7 7 7 7 7 3
− + + + Unst. 7 7 Stable Stable 7 7 7 7 3
− − + + Unst. Unst. Unst. Unst. Unst. Stable Stable Stable Stable 9
− − − + Unst. Unst. Unst. 7 7 7 7 7 7 3
− + − − Unst. Unst. Unst. 7 7 7 7 7 7 3
− − + − Unst. 7 7 Unst. Unst. 7 7 7 7 3
− + + − Unst. Unst. Unst. Stable Stable Unst. Unst. Unst. Unst. 9
+ − + − Unst. 7 7 7 7 7 7 7 7 1
− + − + Unst. 7 7 7 7 7 7 7 7 1
+ − − + Unst. Stable Stable Unst. Unst. Unst. Unst. Unst. Unst. 9
+ − + + Unst. Stable Stable 7 7 7 7 7 7 3
+ + − + Stable 7 7 Unst. Unst. 7 7 7 7 3

4. NUMERICAL SIMULATIONS

In this section, numerical analyzes are performed employing fourth order Runge-Kutta integration method in order to
solve the nonlinear system of equations ẋ = f(x). A total of np = 1000 forcing periods were analyzed in each case.
A stability configuration, depicted in Figure 2b, with 9 equilibrium points, being 4 stable and 5 unstable, is chosen to be
the focus of this analysis. Dynamical response diagrams and Lyapunov exponent diagrams are built in order to map and
identify different kinds of periodic and aperiodic attractors on the Ω and γ parameter domain. The procedure to classify
different attractors is executed by comparing the magnitude of Lyapunov exponents and verifying the steady state Poincaré
map of the time series in each case. Lyapunov exponent spectrum are examined, and then compared, in two distinct initial
time stages τ0 = 0 and τ0 = 0.75τf (steady state), in order to ensure exponent convergence on cases that show long
transient chaos orbits, where τf = 2πnp/Ω is the final time of integration. Results are classified based on the following
attractors: Period-1, Period-2, Period-3, Period-4, Period-5, Period-6 or greater, Chaotic and Hyperchaotic. Each point
in the diagrams is the result of a numerical integration starting from a specific initial condition. Table 2 summarizes the
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parameters employed in all analyses and the stable equilibrium points based on the defined parameters.

Table 2: Parameters employed on the numerical analysis and its corresponding stable equilibrium points.
α1 α2 β1 β2 ζ1 ζ2 ρ Ω γ
−1 −1 1 1 0.025 0.025 1 0.01 −→ 3 0.01 −→ 1
EP6 EP7 EP8 EP9

(−1, 0,−2, 0) (−1, 0, 0, 0) (1, 0, 0, 0) (1, 0, 2, 0)

Figure 3 shows the dynamical response diagram and largest (λ1) and second (λ2) Lyapunov exponent diagrams for
initial conditions based on EP6 (Equation 19). In Fig. 3a, each color represents the classification of a different dynamical
pattern of motion. In Fig. 3b and 3c rainbow colormap represents positive Lyapunov exponents, while grayscale colormap
represents negative values of Lyapunov exponents. Results show complex patterns with the predominance of Period-
1 (dark gray) and Hyperchaotic (dark red) responses. Period-2, period-3, period-6 and chaotic responses are present
in certain specific areas of the diagram. On the other hand, period-5 patterns are not very robust, indicating certain
difficulty to distinguish a safe zone to always find these types of responses. Period-4 responses are also difficult to find.
The magnitude of positive λ1 and λ2 tend to be larger as Ω increases, to a point in which it starts to quickly decrease.
Moreover, in certain zones, there is a decrease of the magnitude of λ1 and λ2 as γ decreases. An example of this behavior
can be observed around 0.7 < Ω < 1, as hyperchaotic motion quickly turns into chaotic motion as λ2 changes from
positive to negative.
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Figure 3: (a) Attractors based on the dynamical response of the system. P# (# = 1, 2, 3, 4, 5, 6+) stands for periodic
motion, while Ch and HCh shows chaotic and hyperchaotic motion, respectively; (b) Largest Lyapunov exponent (λ1)
diagram; (c) Second Lyapunov exponent (λ2) diagram.
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Figure 3 highlights some points as an example of each dynamical response pattern of motion. x1-ẋ1, x2-ẋ2 and x1-x2
phase subspaces and Poincaré maps of these points are displayed in Figures 4 to 9 following the color of the dynamical
response classification on the diagram. The titles in each phase space indicate the corresponding point in the dynamical
response diagram.

Figure 4 represents the point (1) of a period-1 motion at (Ω, γ) = (1.65, 0.13) in the dynamical response diagram.
This is an example of a dynamical behavior oscillating around EP9.
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Figure 4: Phase subspaces and Poincaré maps of a period-1 motion oscillating around EP9.

Figure 5 represents the point (2) of a period-2 motion at (Ω, γ) = (1.8, 0.335) in the dynamical response diagram.
This illustrates an example of a dynamical behavior oscillating around EP8. Observe that the equilibrium position of
the system starts at EP6 and the steady state response of these two last examples oscillates around different equilibrium
positions (EP9 and EP8, respectively). These dynamical jumps occur due to the transient part of motion, showing different
possibilities even for similar patterns of motion.
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Figure 5: Phase subspaces and Poincaré maps of a period-2 motion oscillating around EP8.

Figure 6 shows two different patterns of motion oscillating around EP7. Green indicates period-3 motion and orange
indicates period-4 motion. A similar jump phenomena occurs in the two degrees of freedom as the system starts at EP6

and finishes oscillating around EP7. It is also interesting to observe that, due to the scarcity of period-4 large areas in the
dynamical response diagram in Figure 3, the need to specify more precise numbers with more decimal places in (Ω, γ) to
find such behavior.



Luã Guedes Costa, Luciana L. da Silva Monteiro, Marcelo Amorim Savi
Chaos and Hyperchaos in a Two-Degree of Freedom Duffing Oscillator

−1.0 −0.5

x1

−0.5

0.0

0.5

ẋ
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Figure 6: Phase subspaces and Poincaré maps of a period-3 and period-4 motion oscillating around EP7.

Period-5 motion is illustrated in Figure 7. The non-robust nature of the period-5 zone in the dynamical response
diagram justifies the need of more precise numbers to find an example of period-5 response. Phase subspace diagrams
show that, in this case, the system oscillates around more than one stable equilibrium point (EP7 and EP8), visiting, at
least, two potential energy wells in the process.
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Figure 7: Phase subspaces and Poincaré maps of a period-5 motion oscillating around multiple equilibrium points.

An interesting behavior of a periodic motion with multiple periods is shown in Figure 8, represented by point (6) in the
dynamical response diagram. A quick view points that this movement seems to be a period-1 response. Nevertheless, a
closer look using a zoom shows that the Poincaré map has a star-like attractor indicating a multi-period periodic response.
Despite the distinct form of the attractor, negative λ1 ensures the motion periodicity.
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Figure 8: Phase subspaces and Poincaré maps of a periodic motion with multiple periods oscillating around EP9.

Finally, Figure 9 shows examples of chaotic and hyperchaotic attractors, respectively, represented in points (7) and
(8) in the dynamical response diagram. The two cases present strange attractors in the Poincaré map, however, chaotic
attractors are represented by a positive larger Lyapunov exponent (λ1 > 0) and a negative second Lyapunov exponent
(λ2 < 0). On the other hand, hyperchaotic attractor presents both λ1 > 0 and λ2 > 0. In other words, chaotic
attractor presents only one instability direction, while hyperchaotic attractor presents two instability directions. It is also
important to notice that the system visits all stable equilibrium points for these two cases. Chaotic case (7) presents
only one equilibrium point that is not visited, the unstable one EP1 = (x̄1, ˙̄x1, x̄2, ˙̄x2) = (0, 0, 0, 0). On the other hand,
hyperchaotic case (8) visits all stable and unstable equilibrium points.
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Figure 9: Phase subspaces ans Poincaré maps of a Chaotic and Hyperchaotic motions oscillating around all stable equi-
librium points.

Another observable difference between the chaotic and hyperchaotic attractors can be highlighted by integrating the
nonlinear system with more forcing periods, resulting in more points in the Poincaré Map. Figure 10 shows that chaotic
attractor has a fractal characteristic, while the hyperchaotic attractor has a messier structure.
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Figure 10: Poincaré maps of a Chaotic and Hyperchaotic attractors for np = 105 forcing periods.

5. CONCLUSIONS

This work addresses a numerical analysis of a two-degree of freedom Duffing Oscillator in order to map different kinds
of dynamical responses of the system. Stability analysis shows a variety of 16 equilibrium configurations depending on
the combination of the stiffness parameters α1, α2, β1, β2. Each equilibrium configuration exhibits a certain quantity of
equilibrium points: 1, 3 or 9, but each one singular. An equilibrium configuration of 9 equilibrium points was chosen
to be the focus of the numerical analysis as it presents more complexity exhibiting 4 stable and 5 unstable equilibrium
points. Fourth order Runge-Kutta integration method was employed in order to solve the nonlinear system. A procedure
to classify different dynamical attractors representing distinct types of periodic and aperiodic dynamical responses was
executed by comparing the magnitude of Lyapunov Exponents and verifying the steady state Poincaré map of the time
series. This procedure was done several times with different external forcing parameters to build dynamical response and
Lyapunov exponent diagrams in order to map the system’s behaviors in the Ω (frequency) and γ (amplitude) domain.
Results show complex behaviors associated with the predominance of period-1 and hyperchaotic attractors. In addition,
specific zones of period-2, period-3, period-6 or greater and chaotic are found presenting a robust occurrence in the map.
On the other hand, period-4 and period-5 areas exist but are not robust enough to safely distinct a zone for these behaviors,
at least for the range of parameters analyzed.
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