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Abstract. This contribution deals with a parametric analysis of a Duffing oscillator. Nonlinear stiffness coefficients are
investigated treating monostable and bistable systems. Besides, the external forcing is evaluated on system dynamics,
mapping and quantifying different types of responses of the dynamical system. Numerical simulations are employed using
fourth order Runge-Kutta method and Lyapunov exponents are used to define chaotic behavior. A statistical analysis is
developed establishing the probability of each kind of response to occur. Results show a variety of complex behaviors
associated with bistable systems.
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1. INTRODUCTION

The classical Duffing oscillator is used to describe a great variety of physical phenomena. Mechanical and electrical
nonlinear systems are usually employed to represent this kind of oscillator, establishing experimental basis for different
investigations. In general, Duffing-type oscillators may present periodic and chaotic responses and a vast literature is
dedicated to exploit the main aspects of this kind of system, such as: Moon and Holmes (1979), Moon (1992), Tam and
Holmes (2014) and Hikihara and Kawagoshi (1996) exploring the dynamic aspects of a magnetoelastic beam; Gottwald
et al. (1992) who developed an experimental apparatus that mimic Duffing-type systems; Fouda et al. (2016) who inves-
tigated chaotic behavior in electrical Duffing-type circuits; Zaher (2018) who developed a technique that utilizes chaotic
responses of the Duffing oscillator for secure communications; and Ferrari et al. (2010), Erturk and Inman (2011), Cellular
et al. (2018) and Paula et al. (2015) who investigated bistable piezomagnetoelastic energy harvesting structures. In order
to successfully design a Duffing-type system, parametric analysis is essential. Due to the complex nonlinear dynamics
of these systems, this analysis is always revisited in order to define new strategies. The definition and classification of
different kinds of response is an essential task that need to be associated with appropriate tools. In this regard, chaotic
behavior is an important response that can be desirable or undesirable depending on the application. Lyapunov exponents
is usually an accepted tool to define chaos and the method proposed by Wolf et al. (1985) is a good alternative for this
aim. This contribution develops a numerical investigation in order to map and quantify the different kinds of responses of
a Duffing-type one degree of freedom oscillator. This analysis is useful for different design purposes especially the ones
related to energy harvesting systems.

2. MATHEMATICAL BACKGROUND

The classical forced Duffing oscillator is mathematically described by the following dimensionless equation of motion,

ü+ ζu̇+ αu+ βu3 = γ sin (Ωt) (1)

where ζ is the damping coefficient, γ is the forcing amplitude, Ω is the forcing frequency, α and β are nonlinear dimen-
sionless stiffness coefficients that define the restitution force, F (u) = αu+ βu3. Acceleration, velocity and position are
represented by ü, u̇ and u, respectively, and t is the time.

The equilibrium points (ū, ˙̄u) of the system occur when velocity and acceleration are zero, therefore 3 points are
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identified:

(ū, ˙̄u) = (0, 0), (ū, ˙̄u) =

(√
−α
β
, 0

)
, (ū, ˙̄u) =

(
−
√
−α
β
, 0

)
(2)

Stability analysis shows that if α > 0, the system is monostable with one stable equilibrium point at (ū, ˙̄u) = (0, 0).
However, if α < 0 the system is bistable with one unstable at (ū, ˙̄u) = (0, 0) and two stable points at (ū, ˙̄u) =
(±
√
−α/β, 0). This analysis can be clarified from the potential energy function, presented in Equation 3, that presents a

double-well potential for a bistable system and a single-well potential for a monostable system, (Savi, 2017).

H(u) =

∫
F (u)du =

1

2
αu2 +

1

4
βu4 (3)

In monostable cases, the system oscillates around the single stable equilibrium point. In bistable cases, the system
can either oscillate around one stable equilibrium point visiting one well, or jump between the two wells, visiting the two
stable equilibrium points. Figure 1 shows the curves for restitution force and the potential energy of the system. The
bottom of the wells represent the stable equilibrium points of the system. Also, for bistable cases, this curves show the
necessary energy for the system to jump from one equilibrium point to another.
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Figure 1: Restitution force and potential energy for different values of α and β.

3. NUMERICAL RESULTS AND DISCUSSION

Numerical simulations are carried out employing the fourth order Runge-Kutta method. Lyapunov exponents are
estimated using the method proposed by Wolf et al. (1985). The parametric analysis is developed by building response
maps that identify different kinds of response, classifying periodic and aperiodic regions. The procedure to build the maps
uses the same initial conditions, u0 and u̇0, for all values of α and β, analyzing 1000 forcing periods, considering the last
250 as permanent regime. Table 1 shows the parameters employed in numerical simulations. Table 2 presents a response
classification for the analysis. Note that different kinds of periodic motions are identified, together with chaotic responses.
Escape points are related to responses different from the classified ones. The identification of each kind of response is
based on Poincaré section recurrence analysis. Therefore, the steady-state response is evaluated in order to identify the
system response. Lyapunov exponents are employing to assure chaotic-like responses.

Table 1: Duffing oscillator parameter ranges employed for the parametric analysis.
ζ α β γ Ω u0 u̇0

0.05 −1→ 1 0→ 2 0.01→ 1.5 1 0 0

Figure 2 shows the response maps of the Duffing oscillator varying the stiffness coefficients considering different
values of the forcing amplitude. It is noted that increasing the forcing amplitude, response areas are squeezed while new
patterns emerge. Figure 2a and 2b shows that for very low forcing values the system tends to be periodic. The occurrence
of chaotic regions in Figure 2c suggests that the system have enough energy to jump between equilibrium points for almost
all values of β and negative α above and within the red region. Chaotic responses tend to diminish when γ increases,
followed by a increase of period-2, period-3 and period-6+ responses for higher values of γ.
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Table 2: Color legend for response types.
       #

Period-1 Period-2 Period-3 Period-4 Period-5 Period-6+ Chaotic Escape Points

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Response maps of the Duffing oscillator for different magnitudes of forcing amplitude. (a) γ = 0.01, (b)
γ = 0.05, (c) γ = 0.1, (d) γ = 0.15, (e) γ = 0.3, (f) γ = 0.5, (g) γ = 0.8, (h) γ = 1.0 and (i) γ = 1.5.
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Figures 3 and 4 quantify the amount of occurrence of each kind of response for a range of values of γ. Bistable
and monostable cases, and the whole scope of the maps are considered. Colors in the graphs represent the same behavior
described in Table 2, except escape points that are represented by gray color. For bistable systems, there is a peak presence
of chaotic areas and a almost proportional decrease of period-1 responses on maps whose forcing amplitude is relatively
low. For medium values of γ, the maps display a rapid increase of period-1 and the decay of chaotic responses. For
high values, a small increase of period-2 regions is observed. Finally for very high forcing amplitudes, there is a rapid
increase of period-3 regions almost proportional to a decrease in period-1 responses. For monostable systems, there is
a predominance of period-1 regions for γ < 1, and the appearance of period-3 regions for γ > 1. Nevertheless, for all
forcing values, the dominance of period-1 response regions is observed when considering the whole scope of the maps
(bistable + monostable).
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Figure 3: Occurrence of system responses for each stability condition and for the full scope of the maps.

In all cases, responses with periodicity above 3 tend to occupy small regions on the maps, being less prevalent. Figure
4 shows the occurrence of these regions. For the extension of γ values analyzed, high periodicity responses occur only in
bistable systems, and have its peak when the forcing amplitude is relatively low (γ < 0.5) or very high (γ > 1).
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Figure 4: Occurrence of high periodicity system responses for each stability condition and for the full scope of the maps.

4. CONCLUSION

This paper presents an alternative approach to analyze Duffing-type systems. Classical numerical procedures as fourth
order Runge-Kutta method and Lyapunov exponents are employed to build response maps that identify chaotic and pe-
riodic regions referring to the order of periodicity. These maps allow one to analyze monostable and bistable systems,
identifying response patterns. It is clear that monostable system tends to be more stable while bistable systems tend to
present more complex behaviors. In general, for lower forcing amplitudes, the system tends to behave more chaotically
while for mid-high forcing amplitudes, period-2, period-3 responses tend to increase. However, for all cases, period-1
responses are dominant. This analysis shows that system response maps can be a useful tool to design and chose the
optimal parameters of a Duffing-type system accordingly. Among the application where this strategy can be useful, it
should be highlighted piezomagnetoelastic energy harvesting system.
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