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Abstract: Recent technological developments are demanding for self-powered electronic systems that need wireless and
portable devices. In this regard, nonlinear mechanical energy harvesting systems are proving to be a reliable solution to
turn wasted environmental mechanical energy into electrical energy by means of the direct piezoelectric effect. This work
addresses a numerical characterization of two mechanical energy harvesting systems investigated based on nonlinear
dynamics perspective. Results show complex dynamical patterns and highlight the best application scenario for each
harvester.
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INTRODUCTION

One of the first works to suggest the concept of harness wasted vibration environmental energy to convert to useful
electrical energy refers to Williams and Yates (1996), in which the authors discuss three possible forms of transduction
mechanisms: piezoelectric, electromagnetic and electrostatic. Since then, an increasing number of publications deal with
the topic and new transduction mechanisms were introduced in the last decade, being the magnetostrictive (Deng and
Dapino, 2017) and triboelectric (Fan et al., 2012) the most common among it. Also, the exploitation of hybrid transducer
mechanisms were also proposed (Halim et al., 2019). Despite the transduction mechanism, it is consensus in the literature
that the introduction of nonlinearities improve the efficiency of these systems, as it can significantly enhance the frequency
bandwidth of operation and the output power in several scenarios (Tran et al., 2018).

Impact-driven/non-smooth systems greatly increase the bandwidth of operation, however the larger the bandwidth, the
lower is the maximum power achieved (Ai et al., 2019). In addition, it can be more susceptible to failure as those systems
are heavily submitted to mechanical wear. Multistable systems are vastly employed to increase the frequency bandwidth,
maintaining the power output in some cases. Yet, a multistable system implies that it has one or more potential energy
barriers that need to be overcome by the system to produce efficient conversion rates (Jian et al., 2020). Bistable (Costa
et al., 2021) and tristable (Kumar et al., 2017) systems are the most common class of multistable systems studied in the
literature, although some works as (Zhou et al., 2017) and (Zhou et al., 2017) treated quadstable and pentastable systems,
respectively. The more equilibrium points the system have, lesser can be the potential barrier of the system, making it
better suitable to be applied in low-amplitude vibrations sites, but more complex to be employed. Multistable systems can
also be affected by asymmetries that can enhance the performance of the harvesters (Tao-Haitao et al., 2021).

Pendulum structures can also be employed to exploit multidirectionality in the energy harvesting process, harnessing
energy from multiple directions (Wu et al., 2014). Another interesting concept is the synergistic use of smart materials
in the energy harvesting process to control the natural frequency of the system, widening its bandwidth of operation and
retaining the maximum power output (Adeodato et al., 2021). The use of shape memory alloys together with piezoelectric
materials is an alternative where a thermal energy is employed to change system properties. Quasi-Zero Stiffness systems
is a new class of systems that presents a wide flat potential energy curve, which means that there is no potential energy
barrier to overcome or a well to be trapped, as in multistable systems, which makes the system free to oscillate across the
flat zone, increasing dramatically its bandwidth of operation (Margielewicz et al., 2022). Although promising, this system
is more complex to be employed due to the specific disposal of its spring elements.

Another technique vastly employed in the literature to create additional peaks of output power is the addition of
relevant degrees of freedom in the system, which makes the structure suitable to be also employed in sites with higher
vibration frequencies (Tang and Yang, 2012). The addition of multiples relevant degrees of freedom can be merged with
nonlinearities. Wu et al. (2014) employed a bistable element in one of the degrees of freedom of their system.

In this regard, this work addresses a numerical analysis of a generic bistable energy harvesting system, with one and
two nonlinear degrees of freedom, mainly focusing on its nonlinear dynamics characteristics and performance.

PHENOMENOLOGICAL MODEL

Consider a typical 2 degrees of freedom energy harvester represented by a reduced order model presented in Fig. 1.
The model can be summarized in a set of variables in which mi is the equivalent mass, ki is the linear stiffness, and ci is the
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viscous damping element. A piezoelectric transducer is attached to the mechanical system, being connected to a simple
resistive circuit. Details of the circuit are represented in Fig. 1(b), in which I(t) is the electrical current flowing through
the circuit, Cp is the equivalent capacitance of the piezoelectric element, Rp and Rl are the resistance of the piezoelectric
element and the load resistance, respectively. The equivalent electrical resistance of the system R is composed by these
two resistances connected in parallel; θ is the electromechanical coupling of the system. The system is subjected to a
harmonic external excitation of the type zb(t) = Asin(ωt), in which A is the excitation amplitude and ω is the excitation
frequency. Finally, a duffing-type restitution force f is incorporated producing multistable characteristics, described in
Eqs. 1 and 2. The values with i = 1,2 index represent the degree of freedom.

f1(z1) =−a1z1 −b1z3
1 (1)

f2(z2 − z1) =−a2 (z2 − z1)−b2 (z2 − z1)
3 (2)

Considering a reference frequency of ω0 =
√

k1/m1, a dimensionless time of τ = ω0t, a reference length L and a
reference voltage V , a normalization of the parameters is done and the dimensionless electromechanical equations of
motion are represented in Eqs. 3 to 6, in which x1(τ) = z1(t)/L, x2(τ) = z2(t)/L, v1(τ) = v1(t)/V and v2(τ) = v2(t)/V .
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Figure 1 – Phenomenological representation of a two nonlinear degrees of freedom energy harvester. (a)
Electromechanical model. (b) Circuit Representation of the transducer elements.

ẍ1 +2ζ1ẋ1 −2ζ2(ẋ2 − ẋ1)+α1x1 +β1x3
1 −α2(x2 − x1)−β2(x2 − x1)

3 −χ1ν1 = γsin(Ωτ) (3)

ẍ2 +(1/ρ)
[
2ζ2(ẋ2 − ẋ1)+α2(x2 − x1)+β2(x2 − x1)

3 −χ2ν2
]
= γsin(Ωτ) (4)

ν̇1 +ϕ1ν1 +κ1ẋ1 = 0 (5)
ν̇2 +ϕ2ν2 +κ2ẋ2 = 0 (6)

The performance of the energy harvesters can be evaluated by the RMS power measure. The Root Mean Square
(RMS) of an alternate voltage can be understood as the value of the constant direct voltage that produces the same power
dissipation in a resistive load. So, it can be defined as:

PRMS =
1

τ f − τ0

∫
τ f

τ0

(
χ1ϕ1

κ1
ν

2
1 +

χ2ϕ2

κ2
ν

2
2

)2

dτ (7)

NUMERICAL SIMULATIONS

In this section, numerical analyses are performed focusing in 3 major aspects of the system: stability, dynamical
responses and performance. Two versions of the system are analyzed: The single degree of freedom bistable energy
harvester (B-EH), and the two nonlinear degrees-of-freedom energy harvester (2NDoF-EH). The parameters used in all
the simulations are summarized in Tab. 1.

Stability Characteristics

The equilibrium points of both systems can be determined by the solutions of the system when both accelerations and
velocities are zero in a non-forced system. The nature of stability of each solution is defined by the evaluation of the
solution through a linearization of the system around each equilibrium point. Therefore, its Jacobian matrix are evaluated
at each equilibrium point and by means of its eigenvalues λ e, the stability characteristics of these points are determined.
Thus, the eigenvalue spectrum of the Jacobian matrix can be classified in 3 sets: (1) Stable if {λ e ∈ C | Re(λ e) < 0},
(2) Unstable if {λ e ∈ C | Re(λ e) > 0}, and (3) Center if {λ e ∈ C | Re(λ e) = 0}. Also, the analysis can be also
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Table 1 – Parameters Employed in the numerical analyses.

Single DoF Bistable Energy Harvester (B-EH)
ρ ζ1 ζ2 α1 α2 β1 β2 χ1 χ2 ϕ1 ϕ2 κ1 κ2 Ω γ

0 0.025 0 −2 →−0.25 0 0.25 → 2 0 0.05 0 0.05 0 0.5 0 0.01 → 3 0.01 → 1

Two Nonlinear DoF Energy Harvester (2NDoF-EH)
ρ (ζ1, ζ2) (α1, α2) (β1, β2) (χ1, χ2) (ϕ1, ϕ2) (κ1, κ2) Ω γ

1 0.025 −0.5 0.5 0.05 0.05 0.5 0.01 → 3 0.01 → 1

complemented by the visualization of the potential energy function of each system, determined by U =−∫ X
0 f(X)dX , in

which f(X) is the dimensionless restitution force of the system, as X is the specific displacement of each case: X1 = x1
and X2 = x2 − x1.
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Figure 2 – Potential energy curve and equilibrium positions of (a) the B-EH system and (b) the 2NDoF-EH system.
Blue dots represent stable equilibrium points, while red dots represent unstable equilibrium positions.

Figure 2 shows the stability configurations of both systems. While the B-EH have 2 stable and 1 unstable equilibrium
points, the 2NDoF-EH have 4 stable and 5 unstable equilibrium points. Therefore, the addition of a single degree of
freedom in the system increases the number of equilibrium points by the power of 2.

Dynamical Responses and Performance

The dynamical characteristics of the B-EH system can be evaluated by means of a dynamical response diagram, as
presented in Fig. 3. The diagram is built by employing the fourth order Runge-Kutta method in a total of np = 1000
forcing periods, in order to solve the nonlinear system of electromechanical equations. Each point of the diagram is the
result of a distinct integration with initial conditions based on a stable equilibrium point (in this case, EP3 as seen in Fig.
2a). 501 x 501 samples are evaluated in order to map and identify different kinds of periodic and aperiodic attractors
on a specific parameter domain (in this case, α and β ). The procedure of classification of each attractor is based on the
comparison of the magnitude of Lyapunov exponents and the verification of the steady state Poincaré map of the time
series in each sample. Lyapunov spectrum are examined utilizing the method proposed by Wolf et al. (1985), and then
compared, in two distinct initial time stages τ0 = 0 and τ = 0.75τ f (steady state), in order to ensure exponent convergence
on samples that show long transient chaos orbits, being τ f = 2πnp/Ω the final integration time. Results are classified
based on the following attractors: Period-1 (dark gray), Period-2 (yellow), Period-3 (green), Period-4 (orange), Period-5
(purple), Period-6 or greater (light blue), Chaotic (red), Hyperchaotic (dark red).

Regarding the performance of the B-EH harvester, Fig. 4a shows the RMS power output (PRMS) for the case shown in
Fig. 3. To determine the best combination of restitution parameters α and β that gives high performances, 400 diagrams
were compared by varying the external excitation parameters γ and Ω as shown in Tab. 1 with steps of ∆γ = 0.05 and
∆Ω = 0.1. Also, a normalization of the type PRMS

norm = PRMS/PRMS
max was done to account for the maximum and minimum

power output differences in each diagram, where PRMS
max is the maximum power in each diagram. Figure 4b summarizes the

result of this comparison for a base value of PRMS
norm = 0.5, showing that 49.25% of the diagrams have performance greater

than PRMS
norm ≥ 0.5 in the condensed region around α ≈ −0.3 and β ≈ 0.3. On the other hand, Fig. 4c shows regions that

shows better chances of having inter-well motion dynamics (motion that passes though two equilibrium points), which
means that 91.25% of the diagrams show better bandwidths of operation around α ≈−0.4.

The comparison between the B-EH and 2NDoF-EH on the γ and Ω parameter domain is now in focus. Fig. 5 shows the
dynamical response diagrams and the power output diagrams for both systems. This time, the diagrams were built based
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Figure 3 – Dynamical responses (attractors) for the α and β parameter domain. Each color represent a different
attractor as seen in the colorbar.
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Figure 4 – Performance in the α-β domain. (a) RMS output power diagram for Ω = 1.6,γ = 0.5. Percentage of
occurrence of (b) higher values of output power and (c) inter-well motion dynamics.

on the EP3 and EP6 initial conditions for the B-EH and 2NDoF-EH systems, respectively. The B-EH diagram shows
the predominance of period-1, period-2, period-3 and chaotic responses, while the 2NDoF-EH diagram shows greater
regions of period-1 and hyperchaotic attractors. Period-2, period-4, period-6+ and chaotic are also relevant in certain
concentrated spots. Regarding the performance, the output power of the 2NDoF-EH system is computed by the output
power density of the system (i. e. the RMS power output divided by the number of degrees of freedom of the system:
PRMS

2NDoF−EH = PRMS/2). Oddly, an additional degree of freedom shortens the bandwidth and increases the maximum RMS
output power density by ≈ 98.2%.
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Figure 5 – Dynamical responses and RMS output power diagrams for the Ω and γ parameter domain. (a) and (b)
represent the results for the B-EH system, while (c) and (d) represent the results for the 2NDoF-EH system.
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CONCLUSIONS

This work deals with the analysis of two vibration energy harvesters investigating their nonlinear dynamics charac-
teristics. The first harvester is the classic single degree of freedom bistable energy harvester (B-EH), and the second one
introduces an additional degree of freedom (2NDoF-EH), which increases the number of equilibrium positions by the
power of 2. Diagrams are built to evaluate the dynamical responses of both systems in two distinct sets of parameter
domains: the restitution parameters α − β for the B-EH system, and the excitation parameters γ −Ω for the both sys-
tems. In general, systems with restitution parameters around α ≈ −0.3 and β ≈ 0.3 produces more output power, while
systems with α ≈−0.4 has the tendency to have a larger bandwidth. By analyzing the external excitation parameter do-
main, it is shown that the B-EH presents the predominance of period-1, period-2, period-3 and chaotic solutions. On the
other hand, the 2NDoF system shows the predominance period-1 and hyperchaotic solutions, with also the relevance of
period-2, period-4, period-6+ and chaotic solution zones. Regarding the performance, the 2NDoF-EH shows an increase
of ≈ 98.2% of the output power density compared to the B-EH system. Besides, the addition of the second degree of
freedom shortens the bandwidth of operation instead of increasing it. In this regard, further investigations need to be
conducted in order to better explore this phenomenon.
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